关键词不能为空

当前您在: 主页 > 英语 >

马铃薯播种机的性能评估——外文文献翻译、中英文翻译

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-02-18 13:24
tags:

-

2021年2月18日发(作者:negotiation)









< br>学




























别:





业:






名:








号:









20**



03



10








外文资料翻译译文



马铃薯播种机的性能评估






大 多数马铃薯播种机都是通过勺型输送链对马铃薯种子进行输送和投放。当种植精度只停留在


一个可接受水平的时候这个过程的容量就相当低。主要的限制因素是:输送带的速度以及取薯勺的


数量和位置。假设出现种植距离的偏差是因为偏离了统一的种植距离,这主要原因是升运链式马铃


薯播种机的构造造成的


.


一个理论的模型 被建立来确定均匀安置的马铃薯的原始偏差,这个模型计算出两个连续的马铃


薯触地的时 间间隔。当谈到模型的结论时,提出了两种假设,一种假设和链条速度有关,另一种假


设 和马铃薯的形状有关。为了验证这两种假设,特地在实验室安装了一个种植机,同时安装一个高

< br>速摄像机来测量两个连续的马铃薯在到达土壤表层时的时间间隔以及马铃薯的运动方式。

< br>


结果显示:



a


)输送带的速度越大,播撒的马铃薯越均匀;



b< /p>


)筛选后的马铃薯形状并不能提


高播种精度。


主要的改进措施是减少导种管底部的开放时间,


改进取薯 杯的设计以及其相对于导种管的位置。


这将允许杯带在保持较高的播种精度的同时有较大 的速度变化空间。



1介绍说明



升运链式马铃薯种植机(图一)是当前运用最广泛的马铃薯种植机。每一个取薯勺装一块种薯


从种子箱输送到传送链。这条链向上运动使得种薯离开种子箱到达上链轮,在这一点上, 马铃薯种


块落在下一个取薯勺的背面,并局限于金属导种管内


.


在底部,输送链通过下链轮获得足够的释放空间使得种薯落入地沟里。

< br>







图一,杯带式播种机的主要工作部 件:



1


)种子箱;

< br>(


2


)输送链;



3


)取薯勺;



4


)上链轮;



5


)导种 管;



6


)护种壁;

< br>(


7


)开沟器;



8


)下链轮轮;



9


)释放孔;



10


) 地沟。







株距和播种精确度是评价机械性能的两个主要参数。高精确度 将直接导致高产以及马铃薯收获时的


统一分级


(McPhee


et al


,


1996



Pavek


&


Thornton


,

< p>
2003)


。在荷兰的实地测量株距(未发表的数据)

变异系数大约为


20


%


。美国和加 拿大早期的研究显示,相对于玉米和甜菜的精密播种,当变异系数


高达

< br>69


%


(Misener


,


1982



Entz


&


LaCroix


,


1983



Sieczka


et al


,


1986)


时,其播种就精度特别低。



输送速度和播种精度显示出一种逆相关关系,因此,目前使用的升运链式种植机的每条输送带

< br>上都装备了两排取薯勺而不是一排。


双排的取薯勺可以使输送速度加倍而且不必增 加输送带的速度。


因此在相同的精度上具有更高的性能是可行的。



该研究的目的是调查造成勺型带式种植机精度低的原因,并利用这方面的知识提出建 议,并作


设计上的修改。例如在输送带的速度、取薯杯的形状和数量上。



为了便于理解,


建立一个模型去描述马铃薯从进入导 种管到触及地面这个时间段内的运动过程,


因此马铃薯在地沟的运动情况就不在考虑之列 。由于物理因素对农业设备的强烈影响


(Kutzbach


,


1989)


,通常要将马铃薯的形状考虑进模型中。

< p>


两种零假设被提出来了:


1


)播种精度和输送带速度无关;



2


)播种精度和筛选后的种薯形状


(尤其是尺寸)无关。这两 种假设都通过了理论模型以及实验室论证的测试。



2材料及方法



2.1


播种材料



几种马铃薯种子如圣特、阿 玲达以及麻佛来都已被用于升运链式播种机测试,因为它们



有 不同的形状特征。对于种薯的处理和输送来说,种薯块茎的形状无疑是一个很重要的因素。许多

< br>形状特征在结合尺寸测量的过程中都能被区分出来


(Du


&


Sun


,


2004




Tao


et


al


,


1995




Z?


dler


,

1969)


。在荷兰,马铃薯的等级主要是由马铃薯的宽度和高度(最大宽度和最小 宽度)来决定的。种


薯在播种机内部的整个输送过程中,其长度也是一个不可忽视的因素




形状因子


S


的计算基于已经提到的三种尺寸:































此处< /p>


l


是长度,


w


是 宽度,


h


是高度(单位:


mm



,且


h


<

< p>
w


<


l


。还有球形高尔夫 球(其密度和马铃薯


密度大致相同)作为参考。同是,在研究中用到的马铃薯的形状特征 通过表一给出



表一



实验中马铃薯及高尔夫球的形状特征







品种



方形网目尺寸,毫米



















形状因子




圣特


28



35 146




阿玲达


35



45 362




麻佛来


35



45 168




高尔夫球


42.8 100



2.2


建立数学模型



数学模型的建立是为了 预测升运链式播种机的播种精度和播种性能,该模型考虑了滚轴的半径


和速度,取薯勺的 尺寸和间距,以及它们相对于导种管壁的位置和地沟的高度(如图二)


。模型假设


马铃薯在下落的过程中并没有相对于取薯勺移动或者相对于轴转动。






图二, 模型模拟过程,当取薯杯到达


A


点的时候模拟开始。释放时间是 开启一个足够大的空间


让土豆顺利通过所需的时间。该模型同时也计算出两个连续的马铃 薯之间的时间间隔以及马铃薯到


达地面(自由下落)的时间。


r


c


代表链轮半径、带的厚度以及取薯杯长度之和;

< p>
x


clear



,取薯勺 与导


种管壁之间的间距;


x


relea se



释放的间距;


α


release


,释放角度;


ω


,

< br>链轮的角速度;


C


点,地沟。



田间作业速度和输送带速度可设定为达到既定的作物间距的要求。马铃薯离开导种管底部 的频



f


pot



通过如下公式计算:




式中:


v


c



是勺型输送带的速度(单位:


m s


?


1


),


x


c


是带上两个取薯勺之间的距离(单位:


m



.


?


1


槽 轮的角速度


ω


r


(单位:


rad s


)计算如下:




导种管的间距必须足够大以使得马铃薯能通过并被释放。


x


release


是当取薯勺以一定的角度


α


release


径向通过链轮时的时间间距。释放角(图二)按 以下公式进行计算:




r

< p>
c


(单位:


m


)是链轮半 径,链条的厚度以及取薯勺长度之和;


x


clear

< p>
(单位:


m


)是取薯勺端面


与导种管管壁之间的间隙。



当马铃薯的各种参数已确定的情 况下,释放马铃薯的所需角度可以通过计算得到。除了形状和


尺寸,护种壁的马铃薯的位 置也具有诀定性的作用,因此,这个模型区分了两种状态:(


a


)最小需


求间距等于马铃薯的高度;(


b


)最大需求间距等于马铃薯的高度。



释放角度


α


o


所需的时间


t


release


的计算公式如下:




当马铃薯释放后,将直接落到地沟。由于每个马铃薯都是在一 个特定的角度释放的,通常那时


都有一个高于地面的高度(图二)。由于小一点的马铃薯 释放得早,因此通常将小块马铃薯放在大


块马铃薯的上方。


< /p>


该模型计算出马铃薯刚好落到地沟时的速度


υ

取薯勺线速度的垂直分量:



end


(单位:


m s


)。假定垂直方向的初速度等于



?


1




释放高度的计算公式为:



y


release


=


y


r


-


r


c


sin


α


y


r


(单位 :


m


)是链轮中心和地沟的距离



自由下落时间的计算公式为:



release




g



9.8


m s


)是自由落体加速度,


v


0


(单位


:


m


)< /p>


是马铃薯释放时垂直下落的初速度。终止速


度的计算公式为:



?


2




马铃薯从


A


点移动到释放点的时间


t


release


还应该加上


t


fall


。该模型计算 出以不同的方式在取薯


勺上定位的两个连续马铃薯之间的时间间隔。最大的误差区间将出 现在马铃薯由纵向定位趋向轴向


定位的过程中,反之亦然。



2.3


实验室装置



一个标准的播种机可以替换片状导种管底部的类似透明丙烯酸的材料(图三)。输送链通过链

< p>
轮被变速电动机驱动,其速度可以通过一个旋转的红外检测仪测得。此装置只能观察一排取薯勺。< /p>





实 验室实验台:片状导种管底端的右下部被透明的丙烯酸金属片替代;右上端正对一个高速摄


像机。



这个摄像机通过透明的导种管对种薯的运动进行摄像 记录,并测量两个连续马铃薯之间的时间


间隔。一张坐标图被安放在导种管的开口处,< /p>


X


轴平行于地面。当种薯的中点通过地面的时候时间


就被记录下来了。连续种薯之间的时间间隔的标准偏差被用来衡量作物间距的精度。

< br>


为了便于测量,测量系统的记录速率设置为


1000< /p>


帧每秒。平均自由下落的速度是


2.5



m s


时,


种薯每帧的移动距离是


2.5


mm


,足够小到可以记录准确的位置。



为了测试链速的影响,进料速度被分别设置为


300



400



500


个种 薯每分钟。(


f


pot


=5,6.7



?


1


?


1


8.3


s


), 对应的链速为


0.33,0.45,0.56



m s


)。这些速度分别对应的是


3

< br>、


2



1


排取薯杯。


?


1


每分钟


400


个种薯的进料率(


0.45

< br> m s


的杯带速度)作为一个固定速度来对马铃薯形状的影响进


行测评。




为了评估时间间 隔的正态分布,


30


个种薯将被重复使用


5


次。在另一个测试中


20


个种薯将 被


重复使用


3


次。


?


1


2.4.


统计分析



< br>对上述假设进行了


Fisher


测试,分析表明:总体呈 正态分布。尾部进行单因素上限分析的


Fisher


测试被用来 检验频率


a



5%

第一类误差,然而一个正确的零假设被错误地拒绝了。其置信


区间等于


(100


?


a)%



3


结果与讨论





3.1


输送带速度



3.1.1


实证结果




测得的连续种薯触地的时间间隔呈正态分布。进料速度为


300



400



500

< p>
的标准偏差



σ


分别为< /p>


33.0



20.5


12.7


ms


。通过


F


检验可知进料率的差异显著。三种进料率的正态



分布如图四所示。当变异系数分别为


8.6%



7.1%



5.5%


的时候,杯带的速度越大则播种机的精度越


高。




图四,三种马铃薯进料速率时间间隔的正态分布图



3.1.2


结果模型预测






图五显示了开口形成时间对升运链速度的影响。链条的速度与沉积时偏离了时间间隔的种薯的

准确性呈线性关系。形成开口的时间越短,偏差越小。计算结果见表二:




表二



模型计算出来的连续种薯之间的时间间隔




带速(


m s




最大时间间隔与最小时间间隔的时间差




s





0·72



17·6




0·36



29·4




0·24



42·8



?


1




升运链脱离导种管壁的速度是很重要的一个因素。相对提高输送带速来说,取薯勺线速度 可以


通过降低链轮的半径来增大。


实验中使用的链轮半径是


0.055



,


是 播种机的一般标准。


为了使取薯



< /p>


勺的线速度达到最高的升运链速度,链轮半径必须通过最低的链条速度计算。由此得出种薯 进料率


为每分钟


300


个和

< p>
400


个的半径分别为


0.025


米和


0.041


米。与此相比,实验室测量的结果是一 条


呈线性变化的直线,最大的半径约为


0.020





数学模型预测 的结果呈一种线性关系。链轮的半径和种薯沉积的精确度呈线性关系。该模型用


来估计进 料率为每分钟


300


个种薯的标准差。


其结果如图六所示,


该模型的预测值与实测数据相比,


其精度逐 渐减小。显然


0.025


米可能是技术上可行的最小半径,相对 于原来的半径的标准差为


75%






< br>图六显示了链轮半径与沉积的种薯时间间隔标准差之间的关系。当满足


r


>0·01


m



时,这种关系是线性的。● ,测量数据;


,数学模型的数据;



■,延长到


R < 0 ? 01


米;


-



线性关系;


R


,决定系数。



2


3.2


马铃薯的尺寸和形状




实验数据由表三给出。显示固定进料率为每分钟


400


个种薯的时间间隔的标准偏差。这



些结果与期望值刚 好相反,


即高的标准偏差将使得形状因子增加。


球状马铃薯的结 果尤其令人吃惊:


球的标准偏差高过阿玲达马铃薯


50%


以上。时间间隔的正态分布如图七所示,球和马铃薯之间的差


异明显。 两个不同品种的马铃薯之间的差异不明显。




表三



马铃薯品种对种植间距的精确度的影响




品种




标准偏差



ms




CV


,



%




阿玲达




8.60


3·0




麻佛来


9.92


3·5




高尔夫球


13.24


4·6





图七,固定进料率下不同形状的沉积的 马铃薯时间间隔的正态分布。






球状马铃薯的这种结果是因为球可以以不同的方式在取薯勺背 部定位。临近杯中球的不同定位


导致沉积精度降低。杯带的三维视图显示了取薯勺与导种 管之间的间隔的形状,显然获得不同大小


的开放空间是可行的。




图八,取薯勺呈


45


度时的效果图;马铃薯在护种壁的位置对其释放具有决定性影响。


< p>
阿玲达块茎种薯在沉积时比麻佛来的精度高。通过对记录的帧和马铃薯的分析,结果表明:阿


玲达这种马铃薯总是被定位平行于最长的轴线的护种壁。因此,除了形状因子外,宽度与高度的 高


比例值也将造成更大的偏差。阿玲达的这个比例是


1.09< /p>


,麻佛来的为


1.15




3.3


实验室对抗模型测试平台



该数学模型 预测了不同情况下的流程性能。相对于马铃薯,该模型对球模拟了更好的性能,然而实


验 测试的结果却恰然相反。另外实验室试验是为了检查模型的可靠性。


< br>在该模型里,两个马铃薯之间的时间间隔被计算出来。起始点出现在马铃薯开始经过


A


点的时


刻,终点出现在马铃薯到达


C


点的时刻。通过实验平台,从


A


到< /p>


C


点的马铃薯的时间间隔被测出。


每个马 铃薯的长度、宽度和高度也通过测量获得,同时记录了马铃薯的数量。测量过程中马铃薯在


取薯杯上的位置是已经确定好的。这个位置和马铃薯的尺寸将作为模型的输入量,测量过程将阿玲


达与麻佛来以


400


个马铃薯每分的速率下进行。测 量时间间隔的标准偏差如表四所示。测量的标准


误差与模型的标准误差只是稍稍不同。对 这种不同现象的解释是:



1


)模型并 没有把图八中出现的


情况考虑进去;



2


)从


A


点到


C


点的时间不一致。块状马铃薯如阿玲达可能从顶部或者最远距离下

落,这将导致种薯到达


C


点底部的时间增加


6ms


表四



通过实验室测量和模型计算出来的开放时间的标准误差的差异




品种



形状因子



标准偏差


, ms




测量值



计算值




阿玲达


326 8.02 5.22




麻佛来


175 6.96 4.40



4.


总结



这个模拟马铃薯从输送带开始释 放的运动的数学模型是一个非常有用的证实假设和设计实验平


台的工具。



模型和实验室的测试都表明:链速越高,马铃薯在零速度水平沉积得更均匀。 这是由于开口足


够大使得马铃薯下降得越快,这对马铃薯的形状和种薯在取薯杯上的定位 有一定的影响,与链条速


度的关系也就随之明确,因此,在保持高的播种精度时,应该提 供更多的空间以减小链条的速度。


建议降低链轮的半径,直至低到技术上的可行度。



该研究显示,播种机的取薯勺升运链链对播种精度(播种的幅宽) 有很大的影响。



更规格的形状(形状因子低)并不能自动提高 播种精度。小球(高尔夫球)在很多情况下沉积



< p>
的精度低于马铃薯,这是由导向的导种管和取薯勺的形状决定的。



因此建议重新设计取薯勺和导种管的形状,要做到这一点还应该将小链轮加以考虑。

< p>



















-


-


-


-


-


-


-


-



本文更新与2021-02-18 13:24,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/665298.html

马铃薯播种机的性能评估——外文文献翻译、中英文翻译的相关文章

马铃薯播种机的性能评估——外文文献翻译、中英文翻译随机文章