关键词不能为空

当前您在: 主页 > 英语 >

Unit Operations of Chemical Engineering(化工单元操作)problems&ans

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-02-13 19:05
tags:

-

2021年2月13日发(作者:小王)


1.3


A



differential


manometer


as


shown


in


Fig.


is


sometimes


used


to


measure


small


pressure


difference. When the reading is zero, the levels in two reservoirs are equal. Assume that fluid B is


methane


(甲烷)


, that liquid C in the reservoirs is kerosene (specific gravity = 0.815), and that


liquid


A


in the U tube is water. The inside diameters of the reservoirs and U tube are


51mm and


6.5mm , respectively. If the reading of the manometer is145mm., what is the pressure difference


over


the


instrument


In


meters


of


water,


(a)


when


the


change


in


the


level


in


the


reservoirs


is


neglected, (b) when the change in the levels


in the reservoirs is taken into account? What is the


percent error in the answer to the part (a)?



Solution




p


a


=1000kg/m


3



p


c


=81 5kg/m


3






p


b


=0.77kg/m


3




D/d=8



R=0.145m


When the pressure difference between two


reservoirs is increased, the volumetric changes in the


reservoirs and U tubes


?


?


2


2


D


x


?


d


R

< br>


















(1)


4


4


so


?


d


?


x


?


?


?


R























(2)


?


D


?


2


and hydrostatic equilibrium gives following relationship

p


1


?


R


?


c


g


?


p< /p>


2


?


x


?


c


g


?


R

< p>
?


A


g






(3)


so


p


1


?


p


2


?


x


?


c


g


?


R


(


?


A


?


?


c


)

< br>g








(4)


substituting the equation (2) for x into equation (4) gives



?


d


?


p


1


?


p


2


?


?


?


R


?

< br>c


g


?


R


(


?


A


?


?


c


)


g





(5)


?


D


?


2


(< /p>


a



when the change in the level in the reservoirs is neglected,














































?


d


?


p


1


?


p


2


?


?


?


R

< br>?


c


g


?


R


(


?


A


?


?


c


)


g


?


R


(


?


A


?


?


c


)


g


?


0

< br>.


145


?


1000

< p>
?


815


?


?

< p>
9


.


81


?


263


Pa


?


D

< p>
?


2




b



when the change in the levels in the reservoirs is taken into account


?


d


?


p

< p>
1


?


p


2


?


?


?


R

?


c


g


?


R


(


?


A


?< /p>


?


c


)


g


?


D


?


?

< p>
d


?


?


?


?


R


?


c

g


?


R


(


?


A


?


?


c< /p>


)


g


?


D


?


?


6


.

< p>
5


?


?


?


?


?


0


.

145


?


815


?


9


.


81


?

< br>0


.


145


?

< br>1000


?


815


?

< p>
?


9


.


81


?


281


.


8


Pa


51


?


?


2


2


2


< br>error=


281


.


8


?


263


281


.< /p>


8



6


.


7




1.4 There are two


U-tube manometers fixed on the fluid bed reactor, as shown in the figure.


The


readings of two U-tube manometers are


R


1


=400mm



R


2

< br>=50mm, respectively. The indicating liquid


is mercury. The top of the manometer is filled with the water to prevent from the mercury vapor


diffusing into the air, and the height


R


3


=50mm. Try to calculate the pressure at point


A


and


B


.





Figure for problem 1.4





Solution:


There is a gaseous mixture in the U-tube manometer meter. The densities of fluids


are denoted by


?


g


,


?


H


2


O


,

< br>?


Hg


, respectively. The pressure at point A


is given by hydrostatic


equilibrium



p


A


?


?

< p>
H


2


O


R


3


g


?


?

Hg


R


2


g


?


?


g


(


R


2


?


R


3


)


g




?


g


is


small


and


negligible


in


comparison


with


?< /p>


Hg


and


ρ


H2O



,


equation


above


can


be


simplified


p


A


?


p


c


=


?


H


2


O


gR


3

< p>
?


?


Hg


gR

< p>
2








=10 00×


9.81×


0.05+13600×

9.81×


0.05


=7161N/m?



p


B


?


p


D

< br>?


p


A


?


?


Hg


gR


1


=7161+13600×


9.81×


0.4=60527N /m






1.5 Water discharges from the reservoir through the drainpipe, which the throat diameter is


d.


The


ratio of


D


to


d


equals 1.25. The vertical distance


h


between the tank


A


and axis of the drainpipe is


2m. What height


H


from the centerline of the drainpipe


to the water level in reservoir is required


for


drawing


the


water


from


the


tank


A



to


the


throat


of


the


pipe?


Assume


that


fluid


flow


is


a


potential


flow.


The


reservoir,


tank


A



and


the


exit


of


drainpipe are all open to air.
















p


a



H


D


d


h


p


a



Figure for problem 1.5


A



Solution:


Bernoulli equation is written between stations 1-1 and 2-2, with station 2-2 being reference plane:


p


1

?


gz


1


?


u


1


2


2


?


?


p


2


?


?


gz


2


?


u


2


2


2

< p>


Where p


1


=0, p


2


=0, and u


1


=0, simplification of the equation



2


u


2



Hg





?























1


2



The


relationship


between


the


velocity


at


outlet


and


velocity


u


o



at


throat can


be


derived


by


the


continuity equation:


?


u


2


?


?

< br>u


?


o


?


?


d


?


?


?


?


?



?


?


?


D


?


2


2


u


o


?


D


?


?

< br>u


2


?


?













2


?< /p>


d


?


Bernoulli equation is written between the throat and the station 2-2







?







?
















3


?


2


2



Combining equation 1,2,and 3 gives


p


0


u


0


2


u


2


< br>1


h


?


g


1


2


?


1000

?


9


.


81


2


?


9


.


8 1



Hg


?


?





4


4


2


?


1000< /p>


2


.


44


?


1


?


1


.


25


?


?


1

< p>
?


D


?



?


?


?


1


?


d


?


Solving for H


u


2


H=1.39m



1.6 A


liquid with a constant density


ρ


kg/m


3


is flowing at an unknown velocity


V


1


m/s through a


horizontal pipe of cross-sectional area


A


1


m


2


at a pressure


p


1


N/m


2


, and then it passes to a section


of the pipe in which the area is reduced gradually to


A


2


m


2


and the pressure is


p


2


. Assuming no


friction losses, calculate the velocities


V


1


and


V


2


if the pressure difference (


p


1


-


p


2


) is measured.


Solution


:



In Fig1.6, the flow diagram is shown


with pressure taps to measure


p


1


and


p


2


.


From the mass-balance continuity


equation


, for constant


ρ


where


ρ


1


=


ρ


2


=


ρ


,





V


1


A


1


A


2


V


2


?



For the items in the Bernoulli equation , for a horizontal pipe,


z


1


=

< br>z


2


=0


V

< br>1


A


1


A


2


Then



Bernoulli equation



becomes, after sub stituting


V


2


?

< p>


for


V


2


,


0< /p>


?


V


1


2


2


?


p


1

< p>
V


1


?


0


?


2


A


1

A


1


2


2


2


?


?


p


2< /p>


?



Rearranging,


A


1


A


1

< p>
2


2


2


?


V


1


(


p

1


?


p


2


?


2


?


1


)< /p>



V


1



p


1


?


p

< p>
2


2


?


?


A


?


?


1

?


?


?


?


A


?


?


1


?< /p>


?


?


?


?


2


?


?


2

< p>
?



Performing the same derivation but in terms of


V


2


,


p< /p>


1


?


p


2


2


?


?


1

< p>
?


?


?


?


A


2


?


?

?


?


A


?


?


1


?


2


V< /p>


2



?


?


?


?


?




1.7 A liquid whose coefficient of viscosity is


?


flows below the critical veloc


ity for laminar flow


in a circular pipe of diameter


d


and with mean velocity


V


. Show that the pressure loss in a length


?


p

32


?


V


of pipe



is


.


2


L


d


Oil of viscosity 0.05 Pas flows through a pipe of diameter 0.1m with a average velocity of 0.6m/s.


Calculate the loss of pressure in a length of 120m.



Solution


:


The average velocity


V


for a cross section is found by summing up all the velocities over the cross


section and dividing by the cross-sectional area



R


R


1












1



V




?









u



2



?













1


udA


?


rdr


2


?


A


0


?


R


?



0


From velocity profile equation for laminar flow



2


?



u




?





0







L




R



2



?



1






r



?





?










2


?


< /p>


?


?


?


4


?


L


?


R

< p>
?


?



?


?


p


?


p

?


?


substituting equation 2 for


u


into equation 1 and integrating




p


0


?


p


L


2


V


?


D



































3


32


?


L



rearranging equation 3 gives





2


L


d




32


?


VL


32


?


0


.< /p>


05


?


0


.


6


?


120


?


p


?


?


?


11520


Pa


2


2< /p>



d


0


.


1





1.8.


In


a


vertical


pipe


carrying water,


pressure


gauges


are


inserted


at


points


A



and


B


where


the


pipe


diameters


are


0.15m and 0.075m respectively. The point B is 2.5m below


A



and


when


the flow


rate


down


the


pipe


is


0.02


m


3


/s,


the


pressure at B is 14715 N/m


greater than that at A.



Assuming


the


losses


in


the


pipe


between


A



and


B


can


be


expressed


as


k


V


2


?


p

< p>
?


32


?


V


2


2


g


where


V



is


the


velocity


at


A, find


the


Figure for problem 1.8


value of


k


.


If


the


gauges


at


A



and


B


are


replaced


by


tubes


filled


with


water


and


connected


to


a


U-tube


containing mercury of relative density 13.6, give a sketch showing how the levels in the two limbs


of the U-tube differ and calculate the value of this difference in metres.



Solution:




d


A


=0.15m;


d


B


=0.075m


z


A


-


z

B


=


l


=2.5m


Q


=0.02 m


3


/s,


p


B


-p


A


=14715 N/m


2



Q


?


V


A


?


?< /p>


4


d


A


V


A


Q


?


2

< p>
2


0


.


02


0


.


785


?


0


.


15


2


?


4


?


1

.


132


m


/

s



d


A


Q


?


V


B


?< /p>


?


4


d


B


V


B


Q


?

< p>
2


B


2


0


.


02


0


.

< br>785


?


0


.

< br>075


2


?


4

< br>?


4


.


529

< br>m


/


s



d


When the fluid flows down, writing mechanical balance equation


p


A


?


z


A


g


?


V


A


2


2


?


?

< br>p


B


?


?


z


B


g


?


V


B


2


2


?


k


V


A


2


2



2


.


5


?


9


.

< br>81


?


1


.

13


2


2


?


14715


1000


?


4

< p>
.


53


2


2


?


k


1


.

< br>13


2


2


24


.


525


?

< br>0


.


638


?

< br>14


.


715


?


10


.


260


?


0


.


638


k




k


?


0.295


making the static equilibrium

p


B


?


?


x


?


g


?


R< /p>


?


g


?


p


A


?


l


?

< p>
g


?


?


x


?


g


?


R

?


Hg


g


R


?


?


p


B


?


?


?


p


A


?


?


l


?


g


H


g


?


?


g


?


?

< br>14715


?


2


.


5


?


1000


?

< p>
9


.


81


12600


?


9


.


81


?


?


79


mm





1.9



The


liquid


vertically


flows


down


through


the


tube


from


the


station


a



to


the station


b


,


then


horizontally


through


the


tube


from


the station


c


to the station


d


, as shown in figure. Two segments of


the tube, both


ab


and


cd



have the same length, the diameter and


roughness.


Find:



1



the expressions of


?


p


ab


?


g


,


h


fab


,



?


p


cd


?< /p>


g



and


h


fcd


, respectively.


Figure for problem 1.9



2



the relationship between readings


R


1


and


R


2


in the U tube.



Solution:


(1) From Fanning equation



2


l


V



h


fab


?


?


d


2



and



2


l


V



h


fcd


?


?


d


2


so



h


fab


?


h


fcd


Fluid flows from station


a


to station


b


, mechanical energy conservation gives



p


a


p


b






?




lg




?







?




h



fab

















?


?



hence



p

a


?


p


b










?




lg




?




h



fab


















2


?



from station


c


to station


d




p


p



c


?


d


?


h


fcd


?


?



hence



p

?


p


c


d


?



h













fcd



















3


?



From static equation


p


a


-p


b


=R


1


< p>
ρ


ˊ


-


ρ



g -l


ρ


g


















4


p


c


-p


d


=R


2


(< /p>


ρ


ˊ


-


ρ



g




























5


Substituting equation 4 in equation 2



then



R



?


?


?


?



g


?


l


?


g


1


?


lg


?


h


fab



?



therefore



?


?


?


?



h



fab




?




R











g

















6


1


?



Substituting equation 5 in equation 3



then




?


?


?


?




h



fcd





?



R




2









g















7


?



Thus


R


1


=R


2






1.10


Water


passes


through


a


pipe


of


diameter


d


i=0.004


m with


the


average


velocity


0.4 m/s,


as


shown in Figure.



1)



What is the pressure drop



?


P




when water flows through the pipe length


L


=2 m, in m H


2


O


column?


2) Find the maximum velocity and point


r


at which


L


it occurs.



3)


Find


the


point


r


at which


the


average


velocity


equals the local velocity.


4



if kerosene flows through this pipe



how do the


variables above change





the viscosity and density of


Water are 0.001 Pas


and



1000

< br>kg/m


3



respecti vely



and


the


viscosity


and


density


of


kerosene


are


0.003


Pas


and



800

kg/m


3



respectiv ely





solution:


1


< p>
Re


?


ud


?

< p>
?


0


.


4


?


0


.


004


?


1000


0


.


001


?


1600






Figure for problem 1.10


r


?


from Hagen-Poiseuille equation


32


uL


?


32


?


0


.


4


?


2


?


0


.


001


?


P


?


d


2

< br>?


0


.


004

< br>2


?


1600



h


?


?


p

?


g


?


1600

< br>1000


?


9


.


81


?


0


.

< br>163


m



2



maximum veloc


ity occurs at the center of pipe, from equation 1.4-19


V


u

< p>
m


ax


?


0.5



so



u


max


=0.4×


2=0.8m


3



when u=V=0.4m/s Eq. 1.4-17


u


u


max< /p>


?


r


?


?


?


1


?


?

< p>
?


r


?



?


w


?


2

2


V


?


r


?


1


?


?


?< /p>


0


.


5



?



0


.

< p>
004


u


?


?

< p>
max


r


?


0

< p>
.


004


0


.

< p>
5


?


0


.


004


?


0


.


71


?


0


.

< br>00284


m



4) kerosene:


Re


?


ud


?


?


0


.


4


?


0


.


004


?


800


0


.


003


0


.


003


0


.


001


?


427



?


?


p


?


?


?


p


?


?


?


?


1600


?

< p>
4800


Pa



h


?


?


?


p

< p>
?


?


?


g


?


4800


800


?


9


.


81


?

< p>
0


.


611


m

< p>




1.12 As shown in the figure, the water level in the reservoir keeps constant. A


steel drainpipe (with


the inside diameter of 100mm) is connected to the bottom of the reservoir. One arm of the U-tube


manometer


is


connected


to


the


drainpipe


at


the


position


15m


away


from


the


bottom


of


the


reservoir, and the other is opened to the air, the U tube is filled with mercury and the left-side arm


of the U tube above the mercury is filled with water. The distance between the upstream tap and


the outlet of the pipeline is 20m.




a)



When the gate valve is closed, R=600mm, h=1500mm; when the gate valve is opened partly,


R=400mm, h=1400mm.


The friction coefficient λ is


0.025, and the loss coefficient of the entrance


is 0.5. Calculate the flow rate of water when the gate valve is opened partly. (in m?


/h)


b)



When the gate valve is widely open, calculate the static pressure at the tap (in gauge pressure,


N/m?


).


l

e


/


d


≈15

when the gate valve is widely


open, and the friction coefficient λ is still 0.025.





Figure for problem 1.12


Solution




(1) When the gate valve is opened partially, the water discharge is





Set


up


Bernoulli


equation


between


the


surface


of


reservoir


1



1


and


the


section


of



pressure point 2


—2’



and take the center of section 2



2



as the referring plane, then



gZ


1


?< /p>


u


1


2


2


?


p


1


?

< p>
?


gZ


2


?


u


2


2


2

< br>?


p


2


?


?


?


h


f


,


1



2






a




In the equation


p


1


?


0


(the gauge pressure)



p


2


?


?


Hg


gR


?


?


H


2


O


gh


?


13600


?


9


.


81


?


0


.


4


?


1000


?


9

< p>
.


81


?


1


.


4


?


39630


N


/


m



u


1


?


0

< br>Z


2


?


0


2





When the gate valve is fully closed, the height of water level in the


reservoir can be related


?


H


g


(


Z


1


?


h


)


?


?


Hg


gR




to h (the distance between the center of pipe and the meniscus of left arm of U tube).



2


O




b






where h=1.5m


R=0.6m


Substitute the known variables into equation b


Z


1


?


13600


?


0


.


6


1000

l


d


?


1


.


5


?


6


.< /p>


66


m


?


K


c


)


V


2



?


h


f


,


1


_


2

< br>?


(


?


2


?


(


0


.


0 25


?


15


0


.


1


?


0


.< /p>


5


)


V


2



?


2


.

< p>
13


V


2


2


Substitute the known variables equation a



9.81×


6.66=


V


2


2


?

< br>39630


1000


?


2


.


13


V



2


the velocity is



V =3.13m/s





the flow rate of water is



?


2


V


h


?


3600


?< /p>


4


d


V


?


3600


?


?


4


?


0


.


12


?


3


.


13


?


88


.


5

< p>
m


/


h



3



2




the pressure of the point where pressure is measured when the gate valve is wide-open.



Write mechanical energy balance equation between the stations 1



1




and 3-3?



then




gZ


1< /p>


?


V


1


2


2


?


p


1

< p>
?


?


gZ


3


?


V


3


2

< br>2


?


p


3


?


?


?


h


f


,


1



3




c




since


Z


1

?


6


.


66


m



Z


3


?


0



u


1


?


0


p


1


?


p


3



?


h


f


,

< br>1


_


3


?


(


?


l


?


l


e


d


35


?< /p>


K


c


)


V


2


2


V


2

< p>



?

[


0


.


025

(




?< /p>


4


.


81


V


2


0


.


1


?


15


)


?

< p>
0


.


5


]


2



input the above data into equation c





9.81


?


6


.


66


?


V


2


2


?


4


.


81


V



2


the velocity is:


V


=3.51 m/s


Write


mechanical


energy


balance


equation


between


thestations


1



1



and


2


——2’


,


for


the


same


situation of water level




gZ


1


?< /p>


V


1


2


2


2


?


p


1

< p>
?


?


gZ


2


?


V


2


2

< br>?


p


2


?


?


?


h


f


,


1



2




d




since


Z


1

?


6


.


66


m



Z


2


?


0



u


1


?


0


u


2


?


3.51


m


/


s



p


1

< p>
?


0(page pressure


< p>
?


h


f


,


1


_


2


?

(


?


l


d


?


K


c


)


V< /p>


2


2


?


(


0


.


025


?


15


0


.


1


?


0


.


5


)


3


.


51


2


2


?


26

< br>.


2


J


/


kg



input the above data into equation d





9.81×


6.66=


3


.


51


2


2


?


p


2


1000


?


26


.


2



the pressure is:


p

< p>
2


?


32970





1.14



Water at 20



passes through a steel pipe


with an inside diameter of 300mm and 2m long.



There


is


a


attached- pipe


(Φ60


?


3.5mm)


which


is


parallel


with


the


main


pipe.


The


total


length


including


the


equivalent


length


of


all


form


losses


of


the


attached-pipe


is


10m.


A



rotameter


is


installed


in


the


branch


pipe.


When


the


reading


of


the


rotameter


is


2.72m


3


/h, try


to calculate


the


flow


rate


in


the


main


pipe


and


the


total


flow rate,


respectively.


The frictional


coefficient


of


the


main pipe and the attached-pipe is 0.018 and 0.03, respectively.



Solution




The variables of main pipe are denoted by a subscript1, and branch pipe by subscript 2.


The friction loss for parallel pipelines is






?


h


f


1


?


?


h


f


2


V


s


?


V


S


1

< br>?


V


S


2



The energy loss in the branch pipe is


l


2


?


?


h


f


2


?


?


2


?


l


d


2


e


2

< br>u


2


2


2



In the equation


?

2


?


0


.


03



l


2


?


?


l


e


2


?


10


m




d


2


?


0


.


053


u


2


?


3600


?< /p>


2


.


72



?


4


?


0


.


343


m


/


s


2


?


0


.


053


input the data into equation c





?


h


f


2

< p>
?


0


.


03


?


10


0


.


053


?


0


.


343


2


2


?


0


.


333


J


/


kg



The energy loss in the main pipe is


?


h


f


1


?

< br>?


h


f


2


?


?


1


l


1


u


1


d


1


2


2


?


0


.


333



So


u


1


?


0


.


333


?


0


.


3


?


2


0


.


018


?


2


?


2


.

< br>36


m


/


s


The water discharge of main pipe is


?


2


3


V


h


1


?


3600< /p>


?


?


0


.


3


?


2


.

< p>
36


?


601


m


/


h




4


Total water discharge is



V


h


?


601


?


2


.


72


?


603


.< /p>


7


m


/


h



3




1.16


A


Venturimeter


is


used


for


measuring


flow


of


water


along


a


pipe.


The


diameter


of


the


Venturi throat is two fifths the diameter of the pipe. The inlet and throat are connected by water


filled tubes to a mercury U-tube manometer. The velocity of flow along the pipe


is found to be

2


.


5


R



m/s, where


R


is the manometer reading in metres of mercury. Determine the loss of head


between inlet and throat of the Venturi when


R


is 0.49m. (Relative density of mercury is 13.6).


Solution:


Writing mechanical energy balance equation between the inlet



1 and throat o for V


enturi meter

< br>p


1


?


V


1


2


2


?


2


?


z


1


g


?


p


o


?


?


V


o


2


?


z


2


g

< br>?


h


f








1


rearranging the equation above, and set (


z

2


-


z


1


)=


x



p


1


?


p


o


?


V


o


?


V


1


2


2


2


?


?


xg


?


h


f




















2


Figure for problem 1.16


from continuity equation


?


d


1


?


?


5


?


?


?


?


?


V


1

< br>?


6


.


25

V


1












3 < /p>


V


o


?


V


1


?


?


d

< p>
?


?


2


?


?


o


?


2

2


substituting equation 3 for


V


o


into equation 2 gives


p


1


?


p


o


?


?

< br>39


.


06


V

< br>1


?


V


1


2


2


2


2


?


xg


?


h


f< /p>


?


19


.


03< /p>


V


1


?


h


f


?


19


.


03


2


.


5

< p>
R


?


?


2


?


xg


?


h

< br>f





4


?


118


.


94


R


?


x g


?


h


f


fr om the hydrostatic equilibrium for manometer

< p>
p


1


?


p


o


?


R


(

?


Hg


?


?


)


g


?


x


?


g

















5


substituting equation 5 for pressure difference into equation 4 obtains


R


(


?


Hg


?


?


)


g

< p>
?


x


?


g


?


118


.


94


R


?


xg


?


h


f







6


?


rearranging equation 6



h


f


?


R


(


?


Hg


?


?


)


g

< p>
?


118


.


94


R


?


123


.


61


R


?


118


.


94


R


?


4


.


67


R

< p>
?


2


.


288

< p>
J


/


kg



?







ric acid of specific gravity 1.3 is flowing through a pipe of 50 mm internal diameter. A


thin-lipped orifice, 10mm, is fitted in the pipe and the differential pressure shown by a mercury


manometer is 10cm. Assuming that the leads to the manometer are filled with the acid,



calculate


(a)the


weight


of


acid


flowing


per


second,


and


(b)


the


approximate


friction


loss


in


pressure caused by the orifice.


The coefficient of the orifice may be taken as 0.61, the specific gravity of mercury as 13.6, and the


density of water as 1000 kg/m


3




Solution:


a)


D


0


D


1


?


10


50


?


0


.


2



p

< br>1


?


p


2


?


R


(


?


H g


?


?


)


g< /p>


?


0


.


1


(


13600


?


13 00


)


?


9


.


81


?





V


2


?







m


?


C


o


?


D


0


?


?


1


?


?

< br>?


D


?


?


1


?


4


2


?


p


1


?


p


2


?


?


?


0


.


61


1

< p>
?


0


.


2


4


2


?


0

.


1


(


13600


?


1300


)


?


9


.


81


1300


?


0


.


61

< p>
18


.


56


?

< p>
0


.


61


?


4


.


31


?


2


.


63


m

< br>/


s


?


4


D


0


V


2


?


?


2


?


4


?


0


.


01


?


2


.


63


?


1300


?


0


.


268


kg


/


s



2


b)



approximate pressure drop


p< /p>


1


?


p


2


?


R


(


?

< p>
Hg


?


?


)


g


?


0


.

< br>1


(


13600


?


1300


)


?


9

< p>
.


81


?


12066.3 Pa


pressure difference due to increase of velocity in passing through the orifice


V


2


?


?

2


p


1


?


p


2


?


?


V< /p>


2


?


V


1


2


2


2


?

< p>
D


o


?


2


?


?


V


2

?


?


D


?


?


1


?


2


4< /p>


?


1300


2


.


63


(


1


?< /p>


0


.


2


)


2


2


4


?

< p>
4488


.


8


Pa




pressure drop caused by friction loss



?


p


f


?


12066


.


3


?


448 8


.


8


?


75 77


.


5


Pa





2.1


Water


is


used


to


test


for


the


performances


of


pump.


The


gauge


pressure


at


the


discharge


connection is 152 kPa



and the reading of vacuum gauge at the


suction connection of the pump is


24.7


kPa


as


the


flow


rate


is


26m


/h.



The


shaft


power


is


2.45kw


while


the


centrifugal


pump


operates


at


the speed


of


2900r/min.


If


the


vertical


distance


between


the


suction connection


and


discharge connection is 0.4m, the diameters of


both the suction and discharge line are the same.


Calculate


the


mechanical


efficiency


of


pump


and


list


the


performance


of


the


pump


under


this


operating condition.


3


Solution:




Write


the


mechanical


energy


balance


equation


between


the


suction


connection


and


discharge


connection







Z


1


?


where


Z


2


?


Z


1< /p>


?


0


.


4


m



p


1

< p>
?


?


2


.


47


?


10


Pa


(


gauge


p


2


?


1


.


52

< p>
?


10


Pa


(

< p>
gauge


u


1


?


u


2


H


f

< p>
,


1


_


2


5


4


u


1

2


2


g


?


p


1


?


g


?< /p>


H


?


Z


2


?


u


2


2

< p>
2


g


?


p


2


?


g


?

H


f


,


1


_


2



pressure



pressure




?


0


total heads of pump is



H


?


0


.


4


?

< br>1


.


52


?

10


5


?


0


.


247


?


10

5


1000


?


9

< br>.


81


?


18

< br>.


41


m



efficiency of pump is




?


?


N


e


/


N



since













N


e


?


QH


?


g


3600


?


26


?


18


.


41


?


10 00


?


9


.


8 1


3600


?


1


.


3


kW



N=2.45kW


Then mechanical efficiency






?


?


1


.


3


2


.


45


?


100


%


?


53


.


1


%



The performance of pump is



Flow rate



m?


/h



Total heads



m



Shaft power



kW


Efficiency




%




2.2 Water is transported by a


pump from reactor, which has


200


mm


Hg


vacuum,


to


the


tank,


in


which


the


gauge


pressure


is


0.5


kgf/cm


2


,


as


shown


in


Fig.


The


total


equivalent


length


of


pipe


is


200


m


including


all


local


frictional loss. The pipeline is


?


57


×


3.5


mm


,


the


orifice


coefficient


of


C


o



and


orifice


diameter


d


o



are


0.62


and


25


mm,


respectively.


Frictional






26


18.41


2.45


53.1 < /p>


2


10m


1


co efficient


?


is 0.025.



Calculate: Developed head H of pump, in m (the reading


R


of


U


pressure


gauge in orifice meter is 168 mm Hg)



Solution:


Equation(1.6-9)




V


?


0







?


C


0


?


d


?


1


?


?


0


?


?

< br>D


?


0


.


62


0


.


9375

< br>4


2


Rg


?


f


?


?



?


?


0


.< /p>


62


?


25


?< /p>


1


?


?


?


50


?


?


4


2


?


0


.


168


?


9


.


81


(


13600


?


1000


)


1000


?


6


.


44


?


4


.


12


m< /p>


/


s


Mass flow rate < /p>


m


?


V


o


S


o


?


?

< p>
4


.


12


?


3


.


14


4


?


0


.


025


2


?


1000


?


2


.


02


kg


/


s



2) Fluid flow through the pipe from the reactor to tank, the Bernoulli equation is as follows


for


V


1


=


V


2



H< /p>


?


p


2


?


p


1


?


?

< p>
z


?


H


f


?


g



?


z=10m




?


p


?


0


.


5


?


9


.


81


?

< p>
10


4


?


200


760


?


1


.


013


?


10


5


?


75707


Pa



?


p/


?


g= 7.7m


The relation between the hole velocity and veloc


ity of pipe



?


d


?


?


1


?


V


?


V


0


?


0


?


?


4

< br>.


12


?


?

?


?


1


m


/


s



?


2< /p>


?


?


D


?


Friction loss



< p>
2


2


l


u


200


1


?


0


.


025


?



H


f


?


4

f



so


d


2


g


2


2


0


.


05


2


?


9


.


81< /p>


?


5


.


1


m


H=7.7+10+5.1=22.8m




2.3 . A


centrifugal pump is to be used to extract water from a condenser in which the vacuum is


640


mm


of


mercury,


as shown


in


figure.


At


the


rated


discharge,


the


net


positive


suction


head


must


be


at


least


3m


above


the


cavitation


vapor


pressure


of


710mm


mercury


vacuum.


If


losses


in


the


suction


pipe


accounted for a head of 1.5m. What must be the least height of the liquid


level in the condenser above the pump inlet?


Solution


:


From an energy balance,



p


?


p


v


H


g


?


o


?


H


f


?


NPSH


?< /p>


g


H


g




Where




P


o


=76 0-640=120mmHg


P


v


=760-710=50mmHg


Use of the equation will give the minimum height H


g


as




p


o


?


p


v


?


H


f


?


NPSH



H


g


?

< p>
?


g




?



0


.

12


?


0


.


05


)


?


13600


?


9


.


81

< br>?


1


.


5


?


3


?


?


3


.


55


m


10 00


?


9


.


8 1




2.4 Sulphuric acid is pumped at 3 kg/s through a 60m length of smooth 25 mm pipe. Calculate the


drop in pressure. If the pressure drop falls by one half, what will the new flowrate be ?



?






Density of acid








1840kg/m


3



-3


?






V


iscosity of acid





25


×


10


Pas



Solution:


V


elocity of acid in the pipe:


m


u


?

< br>volumetric


flowrate


cross


?


sec


tional

area


of


pipe


?


?


?


4


d


2


?


m


0

< br>.


785


?


d

< br>2


?


3


0


.


785


?


1840


?


0


.


025


2


?


3


.

32


m


/


s


Reynolds number:


Re


?


d


?


u


?

0


.


025


?

1840


?


3


.

< br>32


25


?


10


?


3


?


?

6109



from Fig.1.22 for a smooth pipe when Re=6109, f=0.0085


pressure drop is calculated from equation 1.4-9


h


f


?


?


p


?


4< /p>


f


l


u


2


2


?


d


2

< p>
?


4


?


0


.


0085


60


0

< p>
.


025


3


.

< p>
32


2


?


450


J


/


kg


< p>
?


p


?


450

< p>
?


1840


?


827


.


5


kPa



or friction factor is calculated from equation1.4-25


h


f


?


?


p


?


4< /p>


f


l


u


2


?


d


2


?

< p>
4


?


0


.


046


Re


?


0


.


2


l


u

< br>2


d


2



4


?


0


.


0 46


?


6109


?

0


.


2


60


0


.


025


3


.


32


2


2


?


426


J


/


kg


?


p


?


4 26


?


1840


?

783


.


84


kPa



if the pressure drop falls to 783.84/2=391.92kPa


?


?


?


?


0


.

2


?


p


?


?


?


391920


?

< br>4


?


0


.


046


Re


?


4


?


0


.


046


?


?


?


?


?


2


d


2< /p>


?


?


?


?


p


l


u


?

< p>
1840


?


?


4


?


0


.


046


?


1840


?


?


?


3


?


25


?


10


?


?

< p>
0


.


2


2


?


0


.


2

?


l


d


1


.


2


u


1


.< /p>


8


2



60


0


.


025


1


.


2


u


1079< /p>


.


89


1


.


8


?


`


u


2


0


.


012


1


.


8


so


u


?


1


.


8


391920


?


0


.


012


1079


. .


89


?


1


.


8


4


.


36< /p>


?


2


.


27


m


/


s



new mass flowrate=0.785d


2


u


ρ


=0.785×


0.025


2


×


2.27×

< p>
1840=2.05kg/s




2.4 Sulphuric acid is pumped at 3 kg/s through a 60m length of smooth 25 mm pipe. Calculate the


drop in pressure. If the pressure drop falls by one half on assumption that the change of friction


factor is negligible, what will the new flowrate be ?



Density of acid






1840kg/m


3



-3





V


iscosity of acid





25


×


10


Pa


Friction factor


f

?


0


.


0056

< br>?


Solution:


Write energy balance equation:


p


1

< br>?


z


1


?


u


1


2


2


0


.


500


Re


0


.


32



for hydraulically smooth pipe

?


g


2


g


?


p


?


H


?< /p>


p


2


?


g


2


?


z


2

< p>
?


u


2


2


g


?


h


f


H


?


h


f


?


?


g


?< /p>


?


l


u


d


2


g



?

< p>
4


d


u


?


?


3



2

u


?


3


?


4


?


d


?


2< /p>


?


12


3


.


14


?


0


.


025


2


?


1840


?


3


.


32< /p>


m


/


s



Re


?


3


.


32


?


0


.

< p>
025


?


1840


25< /p>


?


10


?


3


?


6115



f< /p>


?


0


.


0056


?


0


.


500


Re


?


?


0< /p>


.


32


?


0


.


0056


?


2< /p>


0


.


5


6115


0


.


32


?< /p>


0


.


0087



3


.


32


2< /p>


H


?


h


f


?


?


p


l

< p>
u


?


g


d


2


g


?


4

?


0


.


0087

< br>60


0


.


025


2


?


9


.

81


?


46


.

92



Δ


p=46.92


×


1840


×


9.81 =847.0kpa





2.6 The fluid


is pumped through the horizontal pipe from section A


to


B with the


φ


38


?


2.5mm


diameter and length of 30 meters, shown as figure. The orifice meter of 16.4mm diameter is used


to


measure


the


flow


rate.


Orifice


coefficient

< br>C


o



0.63.


the


permanent


loss


in


pressure


is


3.5


×


10


4


N/m


2

, the friction coefficient


λ


=0.024. find:



(1) What is the pressure drop along the pipe AB?



(2)What is the ratio of power obliterated in pipe AB to total power supplied to the fluid when the


shaft work is 500W


, 60%efficiency? (The density of fluid is 870kg/m


3


)






solution




z


A


g


?

p


A


?


u


A


2


2


?


?< /p>


w


?


z


A


g


?


2


p

< p>
A


?


?


u


A


2


2


?

?


h


f



p


A


?


p


B< /p>


?


A


o


?


?


2


h


f

< p>
?


?


l


u


d


2


?


?

p


0


?



?


16


.


4


?


?


?


?


?


0


.


247



A


33


?


?


u


0


?


C

< p>
0


1


?


0


.


247


2


2


gR


?


?


?

< br>?


?


?


?


?


?


0


.


6 3


0


.


97


2


?


9


.


81< /p>


?


0


.


6


?


13600


?


87 0


870


?


?


8


.


5


m


/< /p>


s




u


= (16.4/33)


2


×


8.5=2.1m/s






p


A


?


p


B


?


?


?


h


f


?


0

< br>.


024


?


870


(2)


Ne


?


Wm


?


?


p


?

< p>
d


u


?


?


76855


?


0


.

< p>
785


?


0


.

< p>
033


2


2


30


0


.


033


2


.


1


2


2


?


3


.


5

< br>?


10


4


?

76855


N


/


m


2



?


4

?


2


.


1


?


138


W



so


the ratio of power obliterated in friction losses in AB to total power supplied to the fluid



138


500


?


0

< br>.


6


?


100

< br>%=


46









3.2



A


spherical quartzose particle


(颗粒)



with a density of 2650 kg/m?


settles


(沉淀)



freely


in


the


20




air,


try


to


calculate


the


maximum


diameter


obeying


Stocks




law


and


the minimum


diameter obeying


Newton’


s law.


Solution:



The gravity settling is followed Stocks



law, so maximum diameter of particle settled can be


calculated from Re that is set to 1


Re


?


d


c


u


t


?


?


1


, then


t


?


u


t


?


?


d


c


?



equation 3.2-16 for the terminal velocity



2


?

< p>
d


c


?


?


d


c


(


?

S


?


?


)


g


18


?



solving for critical diameter




d


c


?


1


.


224


3


2


?


(


?


S


?


?


)


g



Check up the appendix


-3


2


The density of 20




air


ρ


=1.205 kg/m?


and viscosity ?


=1.81×


10

N


·


s/m




d


c


?


1


.


224


?


5


.


73


?


10


?


57


.


3


?


m


3

< p>
(


1


.


81


?


10


?


3


)


2


(


2650


?


1


.


205


)


?


1


.

< br>205


?


5


m

< br>



when Reynolds number



1000, the flow pattern follows Newton



s law and terminal velocity can


be calculated by equation 3.2-19


u


t


?


1


.


75


gd


p


?


?


?


p


?


?


?














1



critical Reynolds number is



Re


t


?


?


u

< br>t


?


d


c


?


1000













2


?


rearranging the equation 2 gives


u


t


?

< br>1000


?


?


?


d


c
























3


combination of equation 1 with equation 3



1000


?


?


?


d

c


?


1


.


74


?


(


?


S


?


?


)


g


d


c


?



solving for critical diameter

?


?


32


.


3


3





d


c


(


?


S


?


?


)


?


?


2




?


?


32< /p>


.


3


3


d


c


(


1


.

< p>
81


?


10


?

< p>
3


?


3


)


2


(


2650


?


1


.


205


)


?


1


.


205


m


?


1


.

< br>512


?


10


?


1512


um





3.3



It is desired to remove dust particles 50 microns in diameter from 226.5m


/min of air, using


a settling chamber for the purpose. The temperature and pressure are 21


o


C and 1 atm. The particle


density


is


2403kg/m


3


.


What


minimum


dimensions


of


the



chamber


are


consistent


with


these


conditions? (the maximum permissible velocity of the air is 3m/s)




solution:


to calculate terminal velocity from the equation 3.2-16


u


t


?


d


p


?


?


p


?


?


?


g


2


3


18


?



-5


2


The density of 21




air


ρ


=1.205 kg/m?


and viscosity ?


=1.81×


10

N


·


s/m


u


t


?


d


p


?


?


p


?< /p>


?


?


g


2


18


?



(


50


?


10


?


6


)


(


2403


?


1


.


205


)


?


9


.

< p>
81


?


5


2


18


?


1


.


81


?


10


?


0


.


181


m


/


s



Q

?


BLu


t



so


Q


u


t


226


.


5


6 0


?


0


.


18 1


2


BL


?


?


?


20


.


86


m










1


from equation3.3-4


L


u


?


H


u


t



the maximum permissible velocity of the air is 3m/s


L


3


?


H


0


.


181



L


?


16


.


58


H





























2


set


B


to be 3


m


, then from equation 1


L


=7


m



And



H


=0.42m



-


-


-


-


-


-


-


-



本文更新与2021-02-13 19:05,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/652164.html

Unit Operations of Chemical Engineering(化工单元操作)problems&ans的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
Unit Operations of Chemical Engineering(化工单元操作)problems&ans随机文章