-
人工智能英文版论文
人工智能
(AI)
< br>系统被认为是神经网络,可以识别图片,翻译,甚
至精通古老的游戏。以下是
p>
精心整理的人工智能英文版论文的相关
资
料,希望对你有帮助
!
人工智能英文版论文篇一
Google's AI
Reasons Its Way
around the London
Underground
谷歌人工智能推导出环绕
伦敦地铁系统的路线
DeepMind‟s
latest
technique
uses
external
memory to solve
tasks that require logic and reasoning;a
step toward more humanlike AI
维和推理能力的任务
By
Elizabeth
Gibney,
Nature
magazine
on
October
14,
2016
伊丽莎白
.
吉布尼
2016
年
10
月
14
日发表于《自然》杂志
深度思维最新技术使用了外部存储来解决需要逻辑思
Artificial-intelligence
(AI)
systems
known
as
neural
networks can
recognize images, translate languages and even
master
the
ancient
game
of
Go.
But
their
limited
ability
to
1
represent complex relationships between
data or variables has
prevented them
from conquering tasks that require logic and
reasoning.
人工智能
(A
I)
系统被认为是神经网络,可以识别图片,翻译,甚
至精通古
老的游戏。
但他们描绘数据或变量之间的复杂关系的能力有
限,
这妨碍了他们克服需要逻辑思维和推理能力的任务。
In a
paper published in Nature on October 12, the
Google-owned
company
DeepMind
in
London
reveals
that
it
has
taken
a
step
towards
overcoming
this
hurdle
by
creating a neural
network
with an external memory. The combination allows
the
neural
network
not
only
to
learn,
but to
use memory to
store
and
recall
facts
to
make
inferences
like
a
conventional
algorithm.
This
in
turn
enables
it
to
tackle problems
such as
navigating
the
London
Underground
without
any
prior
knowledge
and
solving
logic
puzzles.
Though
solving
these
problems
would
not
be
impressive
for
an
algorithm
programmed
to
do
so,
the
hybrid
system
manages
to
accomplish this without any predefined
rules.
在
10
月
12
日《自然》杂志中发表的一篇论文中,谷歌在伦敦
的子公司深度思维展示了他们通过结合外部存储创造了一个神经网
络,
来进一步克服这些障碍。
这种和外部存储的结合不仅允许神经网
2
络学习,
还可以通过存
储器来存储和回忆事件,
并以此来像正常情况
那样做推断。
p>
这反过来能够让它解决难题,
比如在没有任何经验的情
况下操控伦敦地铁,
比如解决逻辑谜题。
尽管对于一
个算法程序来说
做到这点并不会令人印象深刻,
但这个混合系统
在没有任何先决条件
的情况下做到了这点。
Although
the
approach
is
not
entirely
new;DeepMind
itself reported attempting a similar
feat in a preprint in
2014;
“
the progress made in
this paper is remarkable
”
,
says Yoshua
Bengio, a computer
scientist at the University of Montreal in
Canada.
虽然这个方法不是一个全新的技术
;;
深度思维自己就在
2014
< br>年
报告过他们尝试了一种相似的技术
;;
但“在论文中的这个进步是非凡
的”
,加拿大蒙特利尔
的计算机学家本吉奥
.
本希奥赞叹道。
MEMORY MAGIC
记忆魔法
A
neural
network
learns
by
strengthening
connections
between virtual neuron-like units.
Without a memory, such a
network
might
need
to
see
a
specific
London
Undeground
map thousands of times to learn the
best way to navigate the
tube.
< br>神经网络通过加强虚拟神经元之间的联系来学习。
如果没有存储
< br>器,
这样一个网络可能需要看一副特定的伦敦地铁地图数千次来学习
3
最佳路线。
DeepMind's
'differentiable
neural
computer';can
make
sense
of
a
map
it
has
never
seen
before.
It
first
trains
its
neural
network
on
randomly
generated
map-like
structures
(which
could
represent stations connected by lines,
or
other relationships), in the process
learning how to store
descriptions of
these relationships in
its
external
memory as
well as answer questions about them.
Confronted with a new
map,
the
DeepMind
system
can
write
these
new
relationships;connections
between
Underground
stations,
in
one
example from the paper;to memory, and recall it to
plan a
route.
深度思维的新系统
;;
他们称它为微分神经计算机
;;
可以理解它从
未见过的地图。
第一次训练神经网络是在
随机生成的类似结构的地图
上
(
被铁路
线链接的车站,或者其他关系
)
,在这个过程中学习如何将
p>
这些关系的描述存储在它的外部存储器并且回答问题。
面对一个新的
地图,深度思维的系统可以把这些新关系
;;
< br>按照一个图纸上例子来连
接各地铁站之间的关系
;;
p>
写到存储器,并能够回忆这些关系然后计划
路线。
< br>
DeepMind‟s
AI
system
used
the
same
technique
4
new
system;which
they
call
a
-
-
-
-
-
-
-
-
-
上一篇:英语模块汇总
下一篇:本科英语毕业论文文献检索指导