-
The
XBee
and
XBee-PRO
OEM
RF
Modules
were
engineered
to
operate
within
the
ZigBee
protocol
and support
the
unique
needs
of low-cost, low-power wireless sensor net-works.
The modules require minimal power and provide
reliable delivery of
data between
remote devices. Both modules operate within the
ISM 2.4 GHz frequency band and are pin-for-pin
compatible with
each other.
XBee
和
XBee - PRO
OEM RF
模块的设计,以
ZigBee
协议内运作,支持低成本的独特需求,低功耗无线传感器网络工程。模块
只需要最小
的功率,就能提供远程设备之间的数据传输的可靠性。这两个模块内运作的
ISM
2.4
GHz
频段,且引脚对引脚相
互兼
容。
1.1Key
Features/
主要特点
High Performance, Low Cost
高性能、低成本
XBee
indoor/Urban: up to 100?(30
m)
outdoor line-of-sight: up
to 300?(100 m)
transmit Power: 1 mW (0 dBm)
receiver Sensitivity: -92 dBm
室内
/
城市:距离
100'
(
30
米)
户外线的视线:
300'
(
100
米)
发射功率:
1
毫瓦(
0 dBm
时)
接收灵敏度:
-92
dBm
的
XBee-PRO
Indoor/Urban:
up to 300?(100
m)
outdoor
line-
of-sight:
up
to
1
mile
(1500
m)
transmit Power: 100 mW (20 dBm) EIRP
receiver Sensitivity: -100 dBm
RF Data Rate: 250,000 bps
室内
/
城市:
300'
(
100
米)
户外线的视线:高达
1
英里(
1500
米)
发射功率:
100
< br>毫瓦
(
20
dBm
的)
的
EIRP
接收灵敏度:
-100
dBm
的
射频数据传输速率:
250,000
个基点
Lower power
低功率
TX Current:
45 mA (@3.3 V)
RX Current: 50 mA (@3.3
V)
Power-
down Current: < 10
μA
TX
电流:
45
毫安(
@
3.3
伏)
RX
电流:
50
毫安(
@ 3.3
伏)
掉电电流:
<10
微安
Advanced Networking &
Security/
先进的网络和安全
Retries
and
Acknowledgements
DSSS
(Direct
Sequence
Spread
Spectrum)Each
direct
sequence
channel
has
over
65,000
unique
network
addresses
available
Point-to-point,
point-to-multipoint
and
peer-to-peer
topologies
supported
Self-routing,
self-healing and fault-tolerant mesh
networking
重试和确认。
DSSS
(直接序列扩频)
每一个序列频道,可使用超过
65000
个唯一
的网络地址
点至点,点对点,点对多点和点对点的对等拓扑支撑
自行安排,自我修复和故障容错网络
Easy-to-Use
易于使用
No
configuration
necessary
for
out-of
box
RF
communicationsAT
and
API
Command
Modes
for
configuring
module
parametersSmall form
factorExtensive command setFree X-CTU Software
(Testing and configuration software)Free &
Unlimited
Technical Support
没有配置必要的外箱射频通信
AT<
/p>
和
API
命令模式配置模块参数
小尺寸
广泛的命令集
免费的
X -
CTU
软件(测试和配置软件)
免费及无限技术支持
1.1.1.
Worldwide Acceptance
全球认证
TX Current: 215 mA (@3.3 V)
RX Current: 55 mA (@3.3 V)
Power-
down Current: < 10
μA
TX
电流:
215
毫安(
@
3.3
伏)
RX
电流:
55
毫安(
@ 3.3
伏)
掉电电流:
<10
微安
FCC Approval
(USA) Refer
to Appendix A [p34] for FCC Requirements. Systems
that contain XBee/XBee-PRO RF Modules
inherit
MaxStream
Certifications.
ISM
(Industrial,
Scientific
&
Medical)
2.4
GHz
frequency
band
Manufactured
under
ISO
9001:2000
registered
standards
XBee/XBee-PRO
RF
Modules
are
optimized
for
use
in
US
,
Canada
,
Australia,
Israel
and
Europe
(contact MaxStream for complete list of
agency approvals).
FCC
认证
(美国)参见附录
A [p34
要求<
/p>
]
。
系统包含的
XBee / XBee-PRO
< br>射频模块继承
MaxStream
的认证。
ISM
(工业,
科学和医疗
)
2.4
吉赫频带的
ISO 9001:2000
认证
< br>机构认证下制造的注册标准的
XBee / XBee-PRO
< br>射频模块列表被优化用于在
美
国
,
加拿大
,
澳大利亚,以色列
和欧洲。
1.2.
Specifications
描述
Table 1
‐
01.
Specifications of the
XBee/XBee
‐
PRO OEM RF Module
(PRELIMINARY)
表
1-01
,
XBee/XBee
‐
PRO
OEM RF
模块
(
简述
)
Specification
描述
Performance
性能
Indoor/Urban
Range
室内和城市的范围
Outdoor RF line-of-sight
Range
室外的范
围
Transmit Power Output(software
selectable)
发射功率输出
(软件可选)
RF Data
Rate
射频数据速率
Serial
Interface Data Rate (software
250,000
bps
250,000 bps
rates also
supported) 1200 - 115200
(标
准的
传输速率,也支持非标准)
-100 dBm (1%
packet error rate)
(
1
%的
错误包)
up to
100 ft. (30 m)
距离
30M
up to 300 ft. (100 m)
距离
100m
1mW (0
dBm)
Up to 300? (100 m)
距离
100
米
Up
to 1 mile (1500 m)
距离
1500
米
60
mW
(18
dBm)
conducted,
100
mW
(20 dBm) EIRP*
xbee
XBee-PRO
1200
-
115200
bps
(non-
standard
baud
1200
-
115200
bps
(non-standard
baud
准的传输速率,也支持非标准)
selectable)
串行接口数据速率
(软件可选
rates also supported) 1200 -
115200
(标
Receiver
Sensitivity
接收器灵敏度
Power
Requirements
电源要求
Supply
Voltage
电源电压
Operating
Current
(Transmit)
工作电流
(发送)
2.8
–
3.4 V
45mA (@ 3.3 V)
-92 dBm (1%
packet error rate)
(
1
%的
错误包)
2.8
–
3.4 V
If
PL=0
(10dBm):
137mA(@3.3V),
(@3.3V),
(@3.3V),
(@3.3V),
(@3.3V),
139mA(@3.0V)
PL=1
PL=2
PL=3
PL=4
(12dBm):
(14dBm):
(16dBm):
(18dBm):
155mA
170mA
188mA
215mA
153mA(@3.0V)
171mA(@3.0V)
195mA(@3.0V)
227mA(@3.0V)
Operating Current (Receive)
工作电流(接收)
Power-
down Current
掉电电流
General
概要
Operating Frequency
Band
操作频段
Dimensions
尺寸
Operating
Temperature
工作温度
Antenna
Options
天线选择
Networking &
Security
网络与安全
50mA (@ 3.3 V)
not
supported
不支持
55mA
(@ 3.3 V)
not
supported
不支持
ISM
2.4 GHz
0.960” x 1.087” (2.438cm x
2.761cm)
-40 to 85o C
(industrial)
Integrated Whip, Chip or
Connector
集成带,芯片或
U.
FL
连接器
ISM 2.4 GHz
0.960” x 1.297” (2.438cm x
3.294cm)
-40 to 85o C
(industrial)
Integrated Whip, Chip or
Connector
集成带,芯片或
U.
FL
连接器
Supported
Network
Topologies
支持的网
络拓扑
Number
of Channels (software
selectable)
通道数量(软件可选)
Addressing Options
寻址选项
Agency
Approvals
机构认证
United
States
(FCC
Part
15.247)
美国
(
FCC
15.247
部分)
Point-
to-point, Point-to-multipoint, Peer-to-peer & Mesh
点至点,点对多点,对等网络与网孔
16 Direct Sequence Channels
16
个直接序列通道
PAN ID, Channel and Addresses
PAN
编号,通道和地址
12 Direct Sequence Channels
16
个直接序列通道
PAN ID, Channel and Addresses
PAN
编号,通道和地址
OUR-XBEE
OUR-XBEEPRO
4214A XBEEPRO
ETSI
(Max.
10
dBm
transmit
power
output)*
Industry Canada
(IC)
加拿大工业部
(
IC
)
4214A XBEE
Europe (CE)
欧盟
ce
ETSI
* When operating in
Europe: XBee
‐
PRO RF Modules
must be configured to operate at a maximum
transmit power output level
of
10
dBm.
The
power
output
level
is
set
using
the
PL
command.
The
PL
parameter
must
equal
“0”
(10
dBm).
Additionally,
European regulations stipulate an EIRP
power maximum of 12.86 dBm (19 mW) for the
XBee
‐
PRO and 12.11 dBm for
the XBee
when integrating
high
‐
gain antennas.
当在欧洲运用时:
XBee - PRO
RF
模块必须被配置为运行在一个最大发射功率为
10 dBm
的输出水平。电源输出级别设置使用
PL
命令。
PL
参数必须等于
“0”
p>
(
10 dBm
)
。此外,欧洲法规规定,
EIRP
最高功率为
< br>12.86 dBm
的(
19
毫
瓦)
,对于
XBee
–
PRO
的
12.11 dBm
和
XBee
时高增益天线
Antenna Options: The ranges specified
are typical when using the integrated Whip (1.5
dBi) and Dipole (2.1 dBi) antennas. The
Chip antenna option provides advantages
in its form factor; however, it typically yields
shorter range than the Whip and Dipole
antenna
options
when
transmitting
outdoors.
For
more
information,
refer
to
the
“XBee
Antenna”
application
note
located
on
MaxStream?s web site
(/support/knowledgebase/?kb=153).
天线选项:指定的范围内使用时是典型的集成块(
1.5
dBi
的)和偶极子(
2.1
dBi
的)天线。
该芯片天线选项提供要素优势,它
的形式,但它通常会产生更短的选择范围比带
和偶极子天线发射时,在户外。
欲
了解更多信息,请参阅
“
的
XBee<
/p>
天线
”
应用指南
的网站位于
MaxStream
的网站
(
/su
pport/knowledgebase/?kb=153
)。
1.3. Mechanical
Drawings
机械尺寸
Figure 1
‐
01.
Mechanical drawings of the
XBee/XBee
‐
PRO OEM RF Modules
(antenna options not shown)
图
1 - 01 XBee / XBee - PRO
OEM RF
模块的机械尺寸(天线选项未显示)
The XBee and
XBee
‐
PRO RF Modules are pin<
/p>
‐
for
‐
pi
n compatible.
XBee
和
XBee -
专业射频模块的引脚
-
为
-
引脚兼容。
1.4. Mounting
Considerations/
安装注意事项
The XBee/XBee-PRO RF Module was
designed to mount into a receptacle (socket) and
therefore
does not require any
soldering when mounting it to a board. The XBee
Development Kits contain
RS-232 and USB
interface boards which use two 20-pin receptacles
to receive modules.
XBee / XBee - Pro
p>
的射频模块的目的是要安装到一个插座(插座)因此安装时不需要任何焊接,开发套件包含的
XBee
RS - 232
和
USB
接口板的使用两个
20
针插座接收模块。
Figure
1
‐
02. XBee Module Mounting
to an RS
‐
232 Interface
Board.
图
1 - 02
XBee
模块安装到一个
RS -
232
接口板。
Through-hole single-row receptacles -
Samtec P/N: MMS-110-01-L-SV (or equivalent)
通孔单排插座
Samtec
P/N: MMS-110-01-L-SV (
或者相同的
)
? Surface
-mount double-row
receptacles - Century Interconnect P/N:
CPRMSL20-D-0-1 (or equivalent)
表面贴装双排插座
P/N: CPRMSL20-D-0-1
(
或者相同的
)
? Surface
-mount single-row
receptacles - Samtec P/N: SMM-110-02-SM-S
表面贴装单排插座
Samtec P/N:
SMM-110-02-SM-S
MaxStream also
recommends printing an outline of the module on
the board to indicate the orientation the module
should be
mounted.
MaxStream
的还建议对印刷电路板印上模块的轮廓,以指示方向便于安装。
1.5. Pin
Signals
引脚信号
Figure 1
‐
03.
XBee/XBee
‐
PRO RF Module Pin
Number(top sides shown
‐
shields on bottom)
图
1-03
XBee / XBee-PRO
射频模块的引脚数(顶部显示
–
防护在底部)
Table
1
‐
02. Pin Assignments for
the XBee and XBee
‐
PRO
Modules
表
1-02XBee
和
XBee -
‐
PRO
的引脚分配
(Low
‐
asserted
signals are distinguished with a horizontal line
above signal name.)
Pin#
1
2
3
4
5
6
7
8
9
10
11
Name
VCC
DOUT
DIN / CONFIG
DO8*
RESET
PWM0 /
RSSI
[reserved]
[reserved]
DTR / SLEEP_RQ* / DI8
GND
AD4* / DIO4*
Direction
-
Output
Input
Output
Input
Output
-
-
Input
-
Either
Description
Power
supply/
电源
UART
Data Out /UART
的数据输出
UART Data In /
UART
的数据输入
Digital
Output 8
数据输出
Module Reset (reset pulse must be at
least 200 ns)
模块复位(复位脉冲必须至少为
200
纳秒)
PWM Output
0 / RX Signal Strength Indicator
PWM
输出
0 /
RX
信号强度指示器
Do not
connect
请勿连接
Do
not connect
请勿连接
Pin Sleep Control Line or Digital Input
8
睡眠引脚控制线或数字输入
8
Ground
接地
Analog Input 4 or Digital I/O 4
< br>模拟输入
4
或数字
I / O
4
12
13
14
15
16
17
18
19
20
CTS / DIO7
ON /
SLEEP
VREF*
Associate / AD5*
/ DIO5*
RTS* / AD6* / DIO6*
AD3* / DIO3*
AD2* / DIO2*
AD1* / DIO1*
AD0* / DIO0*
Either
Output
Input
Either
Either
Either
Either
Either
Either
Clear-to-Send Flow
Control or Digital I/O
7
明确对发送流量控
制或数字
I /
O 7
Module Status
Indicator
模块状态指示灯
Voltage Reference for A/D Inputs
电压参考的
A /
D
输入
Associated
Indicator, Analog Input 5 or Digital I/O 5
相关的指标,模拟输入
5
或数字
I / O
五
Request-
to-Send Flow Control, Analog Input 6 or Digital
I/O 6
要求对发送的流量控制,模拟输入
6
或数字
I / O 6
Analog Input
3 or Digital I/O 3
模拟输入
3
或数字
I / O 3
Analog
Input 2 or Digital I/O 2
模拟输入
2
或数字
I / O 2
Analog Input 1 or Digital I/O 1
< br>模拟输入
1
或数字
I / O
1
Analog Input 0 or Digital I/O 0
模拟输入
0
或数字
I /
O 0
?
Functions
not supported at the time of this release.
Design Notes/
设计注意
:
? Minimum
connections: VCC, GND, DOUT & DIN
/
最小连接:
VCC
,
GND
的,
DOUT
和
DIN
?
Minimum connections for updating firmware: VCC,
GND, DIN, DOUT, RTS & DTR
最小连接更新固件
VCC, GND, DIN,
DOUT
, RTS & DTR
? Signal
Direction is specified with respect to the
mod
ule
信号方向是相对于指定的模块
?
Module includes a 50k Ω pull
-up
resistor attached to RESET
模块包括一个
50K
的
Ω
上拉电阻连接到
RESET
? Several of the input
pull
-ups can be configured using the PE
command
在输入几个拉电路可配置使用
PE
命令
? Unused pins
should be left disconnected
未使用引脚应由断开
1.6.
Electrical
Characteristics
电气特性
Table 1
‐
03. DC
Characteristics of the XBee &
XBee
‐
PRO (VCC = 2.8
‐
3.4 VDC)
表
1-03Xbee
和
X
Bee
‐
PRO
的直流特性的(
VCC = 2.8 - 3.4
伏)
Symbol
代号
VIL
V
IH
V
OL
V
OH
II
IN
II
OZ
Input Low
Voltage
输
入低电压
Input High
Voltage
输
入高电压
Output Low Voltage
输出低电压
Output High
Voltage
输出高电压
Input Leakage
High
Impedance
Le
akage
Current
高阻
抗漏电电流
TX
Transmit Current
VCC = 3.3 V
-
45
215
-
mA
V
IN
= VCC or GND, all inputs,
-
V
IN
=
VCC
or
GND,
all
I/O
-
High-Z, per pin
0.025
0.025
1
1
uA
uA
I
OH
= -2 mA, VCC
>= 2.7 V
VCC - 0.5
-
-
V
All Digital
Inputs
所有数字输入
All
Digital Inputs
所有数字输入
I
OL
= 2 mA, VCC
>= 2.7 V
-
-
0.5
V
0.7 * VCC
-
-
V
-
-
0.35 * VCC
Parameter
参数
Condition
条件
Min
最小
Typical
典型
Max
最大
Units
单位
V
Current
输入漏电电流
per pin
发射电流
RX
Receive Current
接收电流
PWR-DWN
Power-down Current
掉电电流
1.7.
Definitions/
定义
Table 1
‐
04. Terms
and Definitions
表
1-4
术语和定义
ZigBee Node Types /
ZigBee
节点类型
Coordinator
协调器
SM parameter = 1
-
VCC = 3.3 V
-
(XBee)
50
(XBee)
< 10
(PRO)
55
(PRO)
-
uA
-
mA
A
node
that
has
the
unique
function
of
forming
a
network.
The
Coordinator
is
responsible
for
establishing
the
operating
channel
and
PAN
ID
for
an
entire
network.
Once
established,
the
Coordinator
can
form
a
network
by
allowing
Routers
and
End
Devices
to
join
to
it.
Once
the
network is formed, the
Coordinator functions like a Router (it can
participate in routing packets
and be a
source or destination for data packets).
-- One Coordinator per PAN
-- Establishes/Organizes
PAN
-- Can route data
packets to/from other nodes
-- Can be a data packet source and
destination
-- Mains-
powered Refer to the XBee/XBee-PRO Coordinator
section [p17] for more information.
一个节
点有一个独特的功能,
形成网络。
协调器负责建立一个完整的操
作渠道和
PAN
的身份证。
一
旦建立,协调器可以形成一个网络
,它通过允许路由器和终端设备加入。
一旦形成网络,路由器
(协调器的功能就像它可以参与路由数据包,是一个源或目的
地的数据包)。
-
每一个
pan
协调器
-
建立
/
由
pan
组织
-
可路由
的数据包到
/
从其他节点
-
可以是一个数据包的源和目标
-
电源供电参阅的
XBee /
XBee-PRO
协调器节
[
更多信息
p17]
。
Router
路由器
A node that creates/maintains network
information and uses this information to determine
the best
route for a data packet. A
router must join a network before it can allow
other Routers and End
Devices
to
join
to
it.
A
Router
can
participate
in
routing
packets
and
is
intended
to
be
a
mains-powered node
. -- Several Routers can operate in one
PAN
-- Can route data
packets to/from other nodes
-- Can be a data packet source and
destination
-- Mains-
powered Refer to the XBee/XBee-PRO Router section
[p17] for more informa-tion.
一个节点,
创建
/
维护网络信息,
并
确定最佳路径的数据包使用此信息。
一个路由器必须加入网络,
才可以允许其他路由器和终端设备加入到它。
一个路由器可以参与路由数据包,并打算成为电
源
供电的节点。
-
一些路由器可以在一个
PAN
-
可路由的数据包到
/
从其他节点
-
可以是一个数据包的源和目标
-
电源供电参阅的
XBee /
XBee-PRO
路由器节
[-
和灰<
/p>
p17] Informa
公司的更多。
End Device
终端设备
End Devices have no routing capacity.
End Devices must always interact with their parent
node
(Router or Coordinator) in order
to transmit or receive data. An End Device can be
a source or
destination for data
packets but cannot route packets. End Devices can
be battery-powered and
offer
low-power
operation.
--
Several
End
Devices
can
operate
in
one
PAN
--
Can
be
a
data
packet source and destination -- All
messages are relayed through a Coordinator or
Router -- Low
power End Devices are not
supported in this release.
终端设备没有路由能力。终
端设备必须始终与他们的互动父节点(路由器或协调器),以发送或接
收数据。
终端设备可以是一个源或目的地的数据包,但不能发送数据包。
终端设备可以由电池
供电,提供低功
率运行。
-
一些终端设备可以在一
PAN
-
可以是数据包的来源和目的地
-
所有邮件中继通过协调器或路由器
-
低功耗终端设备不支持这个版本。
ZigBee Protocol /
ZigBee
协议
PAN
Personal Area Network - A data
communication network that includes a Coordinator
and one or
more
Routers/End
Devices.
Net-work
formation
is
governed
by
Network
Maximum
Depth,
Maximum Child Routers
and Maximum Children End Devices.
个人区域网
络
-
数据通信网络,其中包括一台协调器和一个或多个路由器<
/p>
/
终端设备。网络工作形成
是由网络最大
深度,最大子路由器和的最大的子终端设备
Joining
加入
The process of a node becoming part of
a ZigBee PAN. A node becomes part of a network by
joining to a Coordinator or a Router
(that has previously joined to the network).
During the process
of joining, the node
that allowed joining (the parent) assigns a 16-bit
address to the joining node
(the
child).
PAN
过程的一个节点的
ZigBee
成为一部分。
<
/p>
一个节点成为网络的一部分加入到一个网络连接到
一个由协调器或
路由器(即以前)。
在参与过程中
,允许加入的节点(父)分配一个
16
位地址
< br>加入节点(子)。
Network Maximum
Depth
网络最大深度
Maximum Child Routers
最多子路由
The level
of descendents from a Coordinator. In a MaxStream
PAN, the Network Maximum Depth
is 5.
p>
协调器水平的后代从。在一个
MaxStreamPAN
中,网络的最大深度为
5
。
The
maximum
number
of
Routers
than
can
join
to
one
node.
The
maximum
number
of
Child
Routers in a MaxStream PAN is 6.
最大数量的路由器可以加入到一个节点。
最多
6
个子
路由在
MaxStream PAN
中
Maximum Child
End Devices
最多子设备
Network
Address
网络地址
Operating Channel
作业通道
The maximum
number of End Devices than can join to one node.
The maximum number of Child
End
Devices
in
a
MaxStream
PAN is
14.
该终端设备的最大数量可以加入到一个节点。
最多
14
个子终端设备在
Ma
xStream PAN
中
The
16-bit address assigned to a node after it has
joined to another node.
16
位地
址分配给一个节点后,加入到另一个节点。
The
frequency
selected
for
data
communications
between
nodes.
The
operating
channel
is
selected by the
Coordinator on power-up.
选定的频率为节点之间的数据通信。
经营渠道选择了
协调器的权力。
Energy Scan
能源扫描
A scan of RF channels that detects the
amount of energy present on the selected channels.
The
Coordinator uses the energy scan to
determine the operating channel.
一个射频信道扫
描,检测选
定的能源渠道的数量目前在。
协调器使用能源扫描,以确定的工作频道。
Route Request
路由请求
Broadcast
transmission
sent
by
a
Coordinator
or
Router
throughout
the
network
in
attempt
to
establish
a
route
to
a
destination
node.
广播传输由一台协调器或路由器在整个网络中的节点
尝试
建立一个路由到目的地。
Route Reply
路线回复
Unicast
transmission sent back to the originator of the
route request. It is initiated by a node when
it receives a route request packet and
its address matches the Destination Address in the
route
request packet.
单播传输送回请求发端的路线。
<
/p>
它是由一个节点开始时,收到一个路由请求分组和它的地址匹配
路
由请求分组的目的地址在。
Route Discovery
路线发现
The process
of establishing a route to a destination node when
one does not exist in the Routing
Table. It is based on the AODV (Ad-hoc
On-demand Distance Vector routing) protocol.
建立一个路
由到目标节点时,
一个不存在于路由表的
过程。
它是基于
AODV
路由协议
p>
(特设按需距离矢量路由)
协议。
ZigBee Stack
ZigBee
堆栈
ZigBee is a published specification set
of high-level communication protocols for use with
small,
low-power
modules.
The
ZigBee
stack
provides
a
layer
of
network
functionality
on
top
of
the
802.15.4
specification.
For
example,
the
mesh
and
routing
capabilities
available
to
ZigBee
solutions are absent in the 802.15.4
protocol.
ZigBee
是一种规范的出版高层通信
协议的规定,小,低功耗模块的使用。在
ZigBee
协议栈提
供了
关于
802.15.4
规范顶层网
络功能层。例如,网和路由功能可用于
ZigBee
的解决方案
是不存在的
802.15.4
协议
2. ZigBee Networks /
ZigBee
网络
2.1.
ZigBee Network Formation /
ZigBee
网络的构成
A
ZigBee PAN is formed by nodes joining to a
Coordinator or to a previously joined Router. Once
the Coordinator defines the
operating
channel and PAN ID, it can allow Routers and End
Devices to join to it. When a node joins a
network, it receives a
16-bit Network
Address. Once a Router has joined the network, it
can also allow other nodes to join to it. Joining
estab-lishes a
parent/child
relationship between two nodes. The node that
allowed the join is the parent and the node that
joined is the child.
The parent/child
relationship is not necessary for routing;
however, it is necessary for network formation and
Network Address
assignment. If a
Coordinator does not exist, a network cannot be
formed. A node cannot transmit or receive data
until it has
joined a PAN.
p
an
是一个
ZigBee
的协调器组成
,
节点加入到一个或一个先前加入路由器。
一旦协调器定义的经
营渠道和
PAN ID
,
它可以让路由
器和终端设备加入到它。
当一个节点加入网络,它接收一个
16
位网络地
址。
一旦路由器加入网络时,它也
可以让其他节点加
入到它。
加入成立的父
/
子关系的两个节点之间。
p>
允许的节点联接是家长和加入的节点是孩子。
父
/
子关系
并不路由需要,但
它是必要的分配网络的形成和网络地址。
如果不存在一个协调器,一个网络不能形成。
一个节点不能发送或接收数据,直到它
已加入了
pan
。
2.1.1. Node
Types/
节点类型
A
ZigBee PAN consists of one Coordinator and one or
more Routers and/or End Devices. Refer to the
Coordinator [p17] and
Router [p17]
sections of the “RF Module Operation” chapter for
more information regarding each node
type.
ZigBeepan
由一
台协调器和一个或多个路由器和
/
或终端设备。
参照协调器
[p17]<
/p>
和路由器
[p17]
章节的
“
射频模块操作
”
为更多的
类
型信息就每个节点
Figure
2
‐
01. Node Types / Sample of
a Basic ZigBee Network Topology
图
2 - 01
。节点类型
/
样的一个基本
ZigBee
网络拓扑
Coordinator
One per PAN
Establishes/Organizes a PAN Mains-powered
协调器
每设立一个
< br>pan/
组织了
pan
电源供电
Router
Optional
Several can be in a PAN Mains-powered
路由器
可
选能在
PAN
供电
End Device
Several can be in
a PAN Low power
终端设备
各自能在
pan
低功耗
End Devices are not supported at the
time of this release.
2.1.2. Network
Limitations
网络限制
MaxStream ZigBee PANs are limited to
the following boundaries:
MaxStreamZigBeepans
限制的以下范围:
?
Maximum
Children
-
The
Coordinator
and
each
joined
Router
can
support
up
to
20
children,
6
of
which
can
be
Routers
(Maximum Child Routers). Refer to
Figure 2-02.
最大子项
-
协调器和各参加路由器可以支持多达
20
台子项,其中
6
个可路由器(最多子项路由器)。
参考图
2
-
02
?
Network
Maximum
Depth
-
The
Maximum
Network
Depth
is
5
-
Maximum
Network
Depth
refers
to
the
level
of
descendents
from
the
Coordinator. Refer to Figure 2-03.
Refer to the definitions table [p8] for more
information.
网络最大深度
-
< br>最大网络深度为
5
-
最大深度是指网络协调员水平的后代从。
参考图
2
-
03
。
<
/p>
请参阅定义表
[P8
的更多信息
]
的。
Figure
2
‐
02. Maximum Number of
Child Devices per Parent
图
2 -
02
占子项父项的最大设备数量
Coordinators
(one per PAN) and Routers can have 6 Routers and
14 End Devices joined to them.
协调器(每个
p>
PAN
)和路由器可以有
6
个路由器和终端设备
14
加入到他们。
Figure 2
‐
03.
Maximum Network Depth
图
2-03<
/p>
。最大的网络深度
Network depth can span 5 levels deep
p>
网络深度可以跨越
5
个级别深度
2.2. ZigBee Network
Communications/ZigBee
网络通信
2.2.1. ZigBee Addressing/
ZigBee
的寻址
The 802.15.4 protocol upon which the
ZigBee protocol is built specifies two address
types:
802.15.4
协
议的
ZigBee
协议赖以建立指定两个地址类型:
?
16
-bit Network
Addresses16
位网络地址
? 64
-bit
Addresses
64
位地址
16-bit Network Addresses
/16
位网络地址
A 16-bit
Network Address is assigned to a node when the
node joins a network. The Network Address is
unique to each node in
the
network.
However,
Network
Addresses
are
not
static
-
it
can
change.
The
following
two
conditions
will
cause
a
node
to
receive a new Network
Address:
一个
16
位网络地址被分配到一个节点时,节点加入网络。
该网络地址是唯一的每个网络节点在。
但是,网络地址是不是静态
的
-
它可以改变。
以下两个条件将导致一个节点收到一个新的网络地址:
1. An End Device cannot communicate
with its parent.
终端设备无法与它的母机进行通讯
2. A Router or End Device, when it
power cycles, sends an 802.15.4 Orphan
Notification com-mand to locate its parent. If the
parent
node
does
not
respond,
the
Router
or
End
Device
considers
itself
not-joined
and
repeats
the
process
of
joining
the
network. Once the node joins the
network, it and all of its descendents will
receive a new Network Address
Since all
ZigBee communications use 16-
bit
addressing, a node?s 16
-bit address
must be known before communications can
take place.
路由器或终端设备,当它的权力周期
,发送一个
802.15.4
孤儿的通知找到其父母。如果父节
点不响应,路由器或终端设备认为不加
入了本身并重申了加入网络的进程。一旦节点加入
该网络,它和它的后代都将收到一个新的网络地址
由于所有的
ZigBee
通信使用
16
位寻址,一个节点的
16
位地址必须知道的地方才
可以通信
64-bit Addresses
64
位地址
Each node
contains a unique 64-bit address. The 64-bit
address uniquely identifies a node and is
permanent.
每个节点包含一个唯一的
64
位地址。
64
p>
位地址唯一标识一个节点,是永久性的。
2.2.2. Mesh Routing
路由网
Mesh routing
allows data packets to traverse multiple nodes
(hops) in a network to route data from a source to
a destination. The
route a packet can
take in a mesh network is independent of the
parent/child relationships established during
joining. Before
transmitting a data
packet from source to destination nodes, a route
must be established. Route discovery is based on
the AODV
(Ad-hoc On-demand Distance
Vector routing) protocol.
网状路由允许数据包遍历多个
节点(啤酒花)在一个网络从源路由数据到一个目的地。
<
/p>
这条路线一包可以在一个网状网络是独立
于父
/
子关系的建立过程中加入。
前转递数据包从源节点到目的地,必须建立一个路线。
路由发现是基于
AODV
路由协议(特
设按需距离矢量路由)协议。
AODV (Ad-hoc On-demand
Distance Vector) Routing Algorithm
AODV
协议(特设按需距离矢量)路由算法
Routing
under
the
AODV
protocol
is
accomplished
using
tables
in
each
node
that
store
in
the
next
hop
(intermediary
node
between source and
destination nodes) for a destination node. If a
next hop is not known, route discovery must take
place in
order to find a path. Since
only a limited number of routes can be stored on a
Router, route discovery will take place more often
on a large network with communication
between many different nodes.
根据协议
AODV
的路由是使用节点表中每个节点存储目的地,在未来的来源和啤酒
花(节点之间的中介目标节点)的。
如果下
一跳不知道,路由发现必须进行,以便找到一个路径。
由于只有有限数量的路线可以被存储在路由器,路由发现会发
生不同的节
点之间往往有很多的沟通与大型网络。
When
a
source
node
must
discover
a
route
to
a
destination
node,
it
sends
a
broadcast
route
request
command.
The
route
request
command contains the source Network Address, the
destination Network Address and a Path Cost field
(a metric for
measuring route quality).
As the route request command is propagated through
the network (refer to the Broadcast Transmission
section[p13]), each node that re-
broadcasts the message updates the Path Cost field
and creates a temporary entry in its route
discovery table.
当一个源节点必须找到一
个路由到目标节点时,它发送一个广播路由请求命令。
p>
这条路线请求命令包含源网络地址,网络地址和
目标成本的路径字段
(
1
质量指标衡量航线)。
由于路由请求命令是通过网络传播(指的是广播传输部分
p>
[P13
的
]
),
每个节点,
重新广播的消息更新路径的成本领域,并创建一个临时表中发现入境航线。<
/p>
When the
destination node receives a route request, it
compares the ?path cost? field against previously
received route reque
st
commands. If the path cost stored in
the route request is better than any previously
received, the destination node will transmit a
route reply packet to the node that
originated the route request. Intermediate nodes
receive and forward the route reply packet
to the Source Node (the node that
originated route request).
当目标节点接收到路由请求
,它比较针对以前收到路由请求命令
'
路径成本
'
字段。
如果路径成本要求存储在收到更好的途径是比
任何以前,目标节点将发送一个路
由应答包的节点起源路线的要求。
中间节点接收和转发路由应答包
向源节点(节点路由请求起源)。
Refer to the ZigBee specification for
more details.
指的是
ZigBee
规范的更多细节。
2.2.3.
Broadcast Transmissions
广播传输
Broadcast transmissions
within the ZigBee protocol are intended to be
propagated throughout the entire network such that
all
nodes receive the transmission.
This requires each broadcast trans-mission be
retransmitted by all Router nodes to ensure all
nodes receive the transmission.
Broadcast transmissions use a passive
acknowledgment scheme. This means that when a node
transmits a broadcast transmission, it
listens to see if all of its neighbors retransmit
the message. If one or more neighbor nodes
do not retransmit the data, the node
will retransmit the broadcast message and listen
again for the neighbor nodes to forward the
broadcast transmission.
ZigBee
协议内的广播传输的目的是传播在整个传输网络,使所有
节点接收。
这就要求每一个广播跨
使命是通过路由器转发,以
确保所有节点的所有节点接收传输。
广播传输使用被动确认计划。
这意味着,当一个节点发送一个广播传送,它的邻居听,看<
/p>
看是否所有的转发该邮件。
如果一个或多个邻居节点不转发数据时,节点会转发广播消息,再次听邻居节点转发的广播传输。
Refer to the ZigBee
specification for more details.
指的是
ZigBee
规范的更多细节。
Module Operation /
RF
模块操作
3.1.
Serial Communications
连续通信
The
XBee/XBee-PRO OEM RF Modules interface to a host
device through a logic-level asynchro-nous serial
port. Through its
serial port, the
module can communicate with any logic and voltage
compatible UART; or through a level translator to
any serial
device (For example: Through
a Max- Stream proprietary RS-232 or USB interface
board).
XBee / XBee - PRO OEM RF
模块接口,通过逻辑电平到主机设备的异步串行端口。通过其串行接口,该模块可以与任何逻辑和
电压兼容的
UART
,或通过电平转换到任何
串行设备(例如:通过
Max-
Stream
专有的
RS - 232
或
USB
接口板)
。
< br>
3.1.1. UART Data Flow
/
UART
的数据流
Devices that have a UART interface can
connect directly to the pins of the RF module as
shown in the figure below.
器件具有
< br>UART
接口可以直接连接到射频模块的引脚如下图所示的。
Figure
3
‐
01. System Data Flow
Diagram in a UART
‐
interfaced
environment
(
图
3 -
01
。
系统数据流图中的
UART -
接口环境
Low
‐
asserted
signals distinguished with horizontal line over
signal name.)
RTS flow
control is not currently
supported./RTS
流控制是目前不支持。
Serial Data
串行数据
Data enters the module UART through the
DI pin (pin 3) as an asynchronous serial signal.
The signal should idle high when no
data is being transmitted.
异
步串行数据输入信号,通过直接投资的
UART
模块引脚(引脚
3
)作为。空闲的信号,应高度时没有数据正在传输。
Each data byte consists of a
start bit (low), 8 data bits (least significant
bit first) and a stop bit(high). The following
figure illustrates
the serial bit
pattern of data passing through the module.
每个数据字节由一个起始位(低),对
8
个数据位(
最低有效位在前)和
1
个停止位(高)。
下图显示了通过该模块通过串行数
据比特模式。
Figure
3
‐
02. UART data packet 0x1F
(decimal number .31.) as transmitted through the
RF module Example Data Format is
8
‐
N
‐
1 (bits
‐
parity
‐
# of stop bits)
图
3 -
02
。
U
ART
的数据包
0x1F
(十进制数<
/p>
0.31
。
奇偶校验
)数据传输通过
RF
模块为例格式为
8 - N -
1
个(位
- -
#
的站
位)
The
module
UART
performs
tasks,
such
as
timing
and
parity
checking,
that
are
needed
for
data
communications.
Serial
communications depend
on the two UARTs to be configured with compatible
settings (baud rate, parity, start bits, stop
bits, data
bits).
该模块的
UART
进行奇偶校验任务,
如时间,
那是需要的数据通信。
串行通信取决于两个
UART
是位配置位,
数据兼容设置
(波
特率,奇偶校验,位开始,停止)。
p>
3.1.2. Transparent Operation/
简单的操作
RF modules
that contain the following firmware versions will
support Transparent Mode:
射频模块包含以下固件版本将支持简单模式:
8.0xx (Coordinator) and
8.2xx (Router). 8.0xx
(协调器)和
8
.2xx
(路由器)。
When operating in Transparent Mode,
modules are configured using AT Commands and API
operation is not supported. The
modules
act as a serial line replacement - all UART data
received through the DI pin is queued up for RF
transmission. Data is
sent to a module
as defined by the DH (Destination Address High)
and DL (Destination Address Low) parameters.
在简单模式运行时,模块的配置使用
AT
命令和<
/p>
API
操作不支持。这些模块作为一个串行线路更换
-
所有的
UART
接收数据
引脚通
过直接投资,是为射频传输排队。数据发送到一个模块中定义的参数由生署(目标
地址高)和
DL
(目标地址低)。
Wh
en RF data is received
that is addressed to the module?s
64
-bit Address, the data is sent out
the DO pin.
当
RF
接收
数据时是给模块的
64
位地址,数据被发送的
< br>DO
引脚。
Serial-to-RF Packetization
串
行至
RF
封包
Data is buffered in the DI
buffer until one of the following causes the data
to be packetized and transmitted:
数据缓冲缓
冲对
DI
原因之一以下,直到传输的数据被打包后:
1. No serial
characters are received for the amount of time
determined by the RO (Packetization
Timeout) parameter. If RO = 0,
packetization begins when a character is received.
1
没有串行字符收到的封包数量(反渗透的时间取决于超时)
参数。
如果反渗透
=
0
,打包一个字符时开始接
2.
Maximum number of characters that will fit (72) in
an RF packet is received.
最大数据包中的字符数,将在
合适的射频(
72
)接收。
3. The Command Mode Sequence (GT + CC +
GT) is received. Any character buffered in the DI
buffer before the sequence is
transmitted.
命令模式序列(
GT+ CC+
GT
)的接收。在缓冲的任何字符直接序列前缓冲区传输。
3.1.3. API Operation /
API
操作
API (Application Programming Interface)
Operation is an alternative to the default
Transparent Operation. The frame-based API
extends the level to which a host
application can interact with the networking
capabilities of the module.
API
< br>(应用编程接口)工作是一个操作替代默认的透明。框架为基础的
API
扩展到何种水平,主机应用程序可以交互模块的联网能
力。
When in API mode, all
data entering and leaving the module is contained
in frames that define operations or events within
the
module.
当在
API
模式下,所有进出的数据模块在该框架中定义的事件行动或模块内。
Transmit Data Frames
(received through the DI pin (pin 3)) include
发送数据帧(获得通过直接投资的引脚(引脚
3
)包括
RF Transmit
Data Frame
RF
发送数据帧
Command Frame (equivalent to AT
commands)
命令帧(相当于
AT
命令)
Receive
Data Frames (sent out the DO pin (pin 2)) include:
接收数据帧(发出了
DO
引脚(引脚
2
))包括:
RF-received data frame
RF
接收到的数据帧
Command response
命令响应
Event notifications such as
reset, associate, disassociate, etc.
通知时间例如复位、联系、分离等等
The API provides alternative means of
configuring modules and routing data at the host
application layer. A host application can
send
data
frames
to
the
module
that
contain
address
and
payload
information
instead
of
using
command
mode
to
modify
addresses. The module
will send data frames to the application
containing status packets; as well as source, RSSI
and payload
information from received
data packets.
该
API
提供了应用层的替代手段配置模块主机和路由数据的。
<
/p>
主机应用程序可以发送数据帧到模块包含地址和有效载荷的信息而
不是使用命令模式来修改地址。
该
模块将数据帧发送到应用程序包含状态数据包,以及源,
RSSI
和数据包有效载荷从收到的信
息。
The API operation option facilitates
many operations such as the examples cited below:
API
的操作选项操作方便的例子很
多,如引述如下:
->
Transmitting data to multiple destinations without
entering Command
Mode
传输数据到多个目的地,而无需输入命令模式
-> Receive success/failure status of
each transmitted RF packet
接收成功
/
失败状态的
RF
传送每个数据包
-> Identify the source
address of each received packet
确定数据包的源地址分别获得
To implement API
operations, refer to API sections [p29].
为了落
实
API
操作,请参考
API
的章节
[p29]
。
3.1.4. Flow Control
流量控制
Figure 3
‐
03.
Internal Data Flow Diagram
图
3 -
03
。
内部数据流图
DI (Data In)
Buffer
(在数据)暂存器
When serial data enters the RF module
through the DI pin (pin 3), the data is stored in
the DI Buffer until it can be processed.
Hardware Flow Control (CTS). When the
DI buffer is 17 bytes away from being full; by
default, the module de-asserts CTS (high)
to signal to the host device to stop
sending data [refer to D7(DIO7 Configuration)
parameter]. CTS is re-asserted after the DI
Buffer has 34 bytes of memory
available.
当串行数据输入引脚
3
)射频模块的引脚通过直接投资(数据存储在缓冲区,直到它可以直接处理。
硬件流控制(
CTS
)的。当直接投资为
17
字节缓冲区距离被充满默认情
况下,该模块去断言中旅(高)的信号,主机设备停止发
送数据
[
指到
D7
(
DIO7
配置)参数
]
。
CTS
是重新断言后,
可直接缓冲区
34
字节内存。
Cases in which the DI
Buffer may become full and possibly overflow:
例,其中直接投资的缓冲区可能会成为完全的,可能溢出:
1. If the module is receiving a
continuous stream of RF data, any serial data that
arrives on the DI pin is placed in the DI Buffer.
The data in the DI buffer will be
transmitted over-the-air when the module is no
longer receiving RF data in the network.
如果模块是一个直接投资接收的射频针连续流上的数据,
p>
到达任何序列数据是存放在缓冲区的直接投资。
直接在缓冲区中的数据
将被传输的空
中时,模块不再接收射频数据网络研究。
2. When data is ready to be
transmitted, the module may need to discover a
Network Address and/or a Route in order to reach
the destination node. Discovery
overhead may delay packet transmission.
当数据准备传输,模块可能需要发现一个网络地址和
/
或路线,以便到达目的地节点。
发现数据包传输的开销可能会延误。
Refer to the ZigBee Networks --> Mesh
Routing sections for more information.
指
的是
ZigBee
网络
-
>
网路由信息的栏目更多。
Refer to the RO (Packetization Timeout)
command description [p25] and the Mesh Routing
section[p12] for more information
指的是反渗
透(封包超时)命令描述
[p25]
和网状路由部分
[
更多信息的
P12]
为
DO (Data Out)
Buffer
DO
(数据输出)暂存器
When RF data is received, the data
enters the DO buffer and is sent out the serial
port to a host device. Once the DO Buffer
reaches capacity, any additional
incoming RF data is lost. Hardware Flow Control
(RTS). If RTS is enabled for flow control (D6
(DIO6 Configuration) Parameter = 1),
data will not be sent out the DO Buffer as long as
RTS (pin 16) is deasserted. Cases in
which the DO Buffer may become full and
possibly overflow:
当
RF
接收数据时,数据进入缓冲区的溶解氧,并发出了串口与主机设备。一旦达到
DO
缓冲能力,任何其他传入
RF
数据
丢失。
硬件流控制(
RTS
)。如果<
/p>
RTS
启用了流量控制的(
D6
(
DIO6
配置)参数
= 1
),数据不会被发送出去的
DO
缓冲区只要转运站
(引脚
16
)是去判
断。事实上
DO
的缓冲区可能会成为完全的,可能溢出:
1. If the RF data
rate is set higher than the interface data rate of
the module, the module will receive data from the
transmitting
module faster than it can
send the data to the host.
如果射频模块的数据速率设
置高于率的数据接口,该模块将接收模块的数据传输速度比从它可以将数据发送到主机。
2. If the host does not
allow the module to transmit data out from the DO
buffer because of being held off by hardware or
software
flow control.
如果主机不
允许模块进行数据传输流量控制或软件的
DO
缓冲区硬件,因为
被关闭的举行。
RTS flow
contol is not supported in this
流控逆变不支持此版本。
3.2.
XBee/XBee-PRO Networks
XBee / XBee-PRO
网络
3.2.1. XBee/XBee-PRO
Coordinator
XBee / XBee-
PRO
协调器
Network
Startup
网络启动
In
order to form a network, a Coordinator must select
an unused operating channel and PAN ID on behalf
of its network. To do
this, the
Coordinator first performs an energy scan on all
channels as specified by its SC (Scan Channels)
parameter. The scan
time on each
channel is determined by the SD (Scan Duration)
parameter. Once the energy scan is completed, an
Active Scan is
issued. The Active Scan
returns a list of discovered Coordinators and
Routers (up to 5 results). The duration of the
Active Scan
on each channel is also
determined by the SD parameter. An unoccupied
operating channel is then chosen for PAN
operations.
为了形成一个网络,一个协调器必须选择一个未使用的经营网
络和渠道的代表
PAN
的
ID
。
要做到这一点,
首先执行协调器能源
扫描)参数指定的频道,所有频道由
SC<
/p>
(扫描。通道扫描时间取决于每个参数的
SD
(扫描时间)。
一旦能量扫描
完成后,发
出一个积极扫描。扫描的主动返回一个结果列表发现的协调器和路由器
(最多
5
)
。该频道
的主动扫描时间每还取决于的
SD
参数。
一个空的操作频道,然后选择
PAN
操作
If the ID (PAN ID) parameter =
0xFFFF: The Coordinator will select a random PAN
ID. Otherwise, the Coordinator will startup on
its stored ID parameter
如果
p>
ID
(
PAN
ID
)参数
=
0xFFFF
的:协调器将选择一个随机
PAN ID
。否则,协调员将启动其存储的
ID
参数
After the Coordinator has
started, it will allow nodes to join to it for a
time based on its NJ (Node Join Time) parameter.
If enabled,
the Associate LED (D5 (DIO5
Configuration) command) will blink 1x per second
after the Coordinator has started. At this point,
the
operating
channel
and
PAN
ID
can
be
read
using
the
CH
(Operating
Channel)
and
ID
(PAN
ID)
commands.
The
16-bit
address of the
Coordinator is always 0x0000. If API is enable (AP
parameter > 0):
经过协调器已经开始,它将允许节点加入)参数加入
时间节点上的时间根据其
NJ
(节点加入时间)参数。
如果启用,协理发光
二极管(
D5
座(
DIO5
配置)命令)将开始闪烁协调器
1
倍后每秒。<
/p>
在这一点上,经营渠道和
PAN ID
可以读取使用的
CH
(频
道经营)和身
份证(
pan ID
)命令。
该报告的协调器
16
位总是
0x0000
。
如果
API
是启用(
AP
参数
>
0
):
The API Modem
Status “Coordinator Started” is sent out the
UART.
API
的调制解调器状态
“
协调器启动
”
发送出的
UART
。
The AI (Association
Indication) command can be used at any point
during the Coordinator startup routine to
determine the status
of the startup
operation.
AI
(指示)命令可以用于启动运作的
任何时候启动例行的协调器,以确定其状态。
3.2.2. XBee/XBee-PRO Router
Bee / XBee-
PRO
路由器
Router Startup
路由器启动
A new
Router must locate a Router that has already
joined a PAN or a Coordinator to join to. To do
this, it first issues an Active
Scan on
each of the SC channels. The scan duration on each
of these channels is determined by the SD
parameter. The Active
Scan will return
a list of discovered Coor-dinators and Routers (up
to 5 results). The Router will then try to join to
a parent (Router
or Coor-dinator) that
is allowing joining, based on the ID parameter. If
ID = 0xFFFF, the Router will attempt to join a
parent on any
PAN ID. Otherwise, the
Router will only attempt joining with a
Router/Coordinator that operates on the PAN ID
specified by the ID
parameter. If a
valid Router/ Coordinator is found, the Router
will attempt to join to that node. If the join
succeeds, the Router has
successfully
started.
必须找到一种新的路由器对路由器,已经加入了
pan
或协调器参加。为此,它首先发出一个主动扫描通道的每个
< br>SC
频道。渠道的
扫描时间这是可持续发展的每个决定的
参数。
主动扫描将返回一个结果列
表发现协调器和路由器(最多
5
)。
路由器将尝试加
入到父(路由器或协
调器)才允许加入的
ID
参数基础上。
如果身份证
=
0xFFFF
的,路由器将尝试加入任何父项
PAN
ID
。
否
则,路由器将只尝试加入一个路由器
/
协调器,
pan
运行在
ID
参数指定的
ID
。
如果一个有效的路由器
/
协调器发现,路由器将尝
试加入到该节点。
如果连接成功,该路由器已成功启动。
After the Router has
started, it will allow nodes to join to it for a
time based on the NJ (Node Join Time) parameter.
If enabled, the
Associate
LED
(D5
(DIO5
Configuration)
command)
will
blink
2x
per
second
after
the
Router
has
started.
At
this
point,
the
operating channel and PAN ID can be
read using the CH (Operating Channel) and ID (PAN
ID) commands. The 16-bit Network
Address of the Router can be read using
the MY (16-bit Source Address) command.
经过路由器已经开始,它将允许节点加入)参数加入时间节点上的时间为
NJ
基础(节点加入时间)。
< br>如果启用,协理发光二极
管(
D5
座(
DIO5
配置)命令)将开始闪烁路由器每秒的
2
倍后。
在这一点上,操作渠道和
PAN ID
可以读取使用的
CH
(频道
经营)和身
份证(
PAN ID
)命令。
16
位网络地址的路由器可以读取使
用我的(
16
位源地址)命令。
If
API
is
enable
(AP
parameter
>
0):
The
API
Modem
Status
“Joined”
is
sent
out
the
UART.
The
AI
(Association
Indication)
command can be
used at any point during the Router startup rou-
tine to know the status of the startup operation <
/p>
如果
API
是启用(
AP
参数
> 0
):
API
的调制解调器状态
“
进入
”
,是发出了
UART
的。
AI
(指示)
命令可用于在路由器启动例程
知道的启动
运行状态在任何点
Router
Configuration
路由器配置
The SC (Scan Channel) and ID (PAN ID)
parameter values affect Router startup by
determining the channels the Router will scan
[SC
(Scan
Channels)
command]
to
find
a
parent
to
join
and
by
determining
the
allowable
PAN
ID(s)
the
node
will
join
(ID
parameter). Changing these parameters
could be problematic if other nodes (children)
have already joined the
Router. These
commands should not be changed once the Router has
started and allowed nodes to join to it.
SC
(扫描频道)和身份证(
PAN
)参数值的影响)命令启动路由器通过确定渠道路由器将扫描
[SC
< br>(扫描频道
]
寻找父项参加并通
过确定允许潘身份证(
s
)的节点将参加(
ID
参数)。
改变这些参数可能有问题,如果其他节点(子项)已经加入了路由器。这
些命令
不应改变,一旦路由器已经开始,并允许节点加入到它。
3.2.3. Network
Reset
网络复位
Resetting a
Coordinator
重置协调器
Upon reset (Power-up, FR (Software
Reset) or NR (Network Reset)):
当复位(上电,阻
燃(软件复位)或
NR
(网络复位)):
1. If a Coordinator has
formed a network, it will retain the PAN ID and
operating channel information as well as a list of
its child
nodes. However, if either the
SC (Scan Channels) or ID (PAN ID) parameters have
changed and the Coordinator is reset, the
Coordinator will startup using the new
SC and/or ID values and will erase its list of
child nodes.
如果一个协调器已形成一个网络,它将保留潘
ID
和操作频道的信息以及它的子节点列表。
不过,如果任何的
SC
(扫描频道)或
ID
(
PA
N ID
)参数的变化和协调器复位,协调器将启动使用新的
S
C
和
/
或
ID
值,并将其删除节点列表的子项。
2. If the Coordinator must change the
operating channel of an established network, it
can alert all nodes in the network to leave
and reform the network by issuing the
NR (Network Reset) command with a
paramet
er of ?1?. When this command is
issued, the
Coordinator sends a
broadcast message across the entire network
forcing all nodes to unjoin and rejoin to a new
parent. The
Coordinator will, after
several seconds, restart and allow joining
according to its saved NJ (Node Join Time)
setting. Once the
Coordinator
has
started,
other
nodes
can
join
the
PAN.
The
other
nodes
will
attempt
to
rejoin
by
scanning
all
channels
(as
specified by the SC parameter) for a
parent operating on the PAN ID (specified by its
ID parameter). This will re-assign the 16-bit
Network Addresses on all nodes. The NJ
parameter value on the Coordinator must be non-
zero if the NR command is issued to
allow at least one Router to join to
it.
如果协调器必须改变既定的网络操作频道的,它可以提醒所有的网络节点在留下
和
'1'
改革的网络发出的
NR
(参数网络重置)命令
的。当该命令发出后,发送一个新的父协调器广
播讯息一整个网络的所有节点要退出强迫和重返中止。
p>
协调器会,
几秒钟后,
重新启动并允许根据
其保存的加盟
NJ
(节点加入时间)
设
置。
一旦协调器已经开始,
其他节点可以加入
< br>PAN
。
其他节点将尝试重新
扫描所有频道(为参数指定的
SC
))的
ID
参数父项的
PAN
身份证(所规
定的。
这将重新分配网络地址的<
/p>
所有节点
16
位。在
NJ
的协调器参数值必须是非零如果十五分发出命令,允许至少一个路由器加入到它
。
Resetting a Router
重置路由器
Upon reset (Power-up, FR (Software
Reset) or NR (Network Reset)):
当复位(上电,<
/p>
FR
(软件复位)或
NR
(网络复位)):
1.
If a Router has joined a network and a reset
occurs (FR or power-up), the Router will send a
broadcast transmission to find its
parent in order to re-establish its
operating channel, PAN ID and16-bit Network
Address. If the Router cannot find its parent, it
will
rejoin
the
network
using
its
SC(Scan
Channels)
and
ID
(PAN
ID)
settings.
This
could
change
the
Ro
uter?s
16
-bit
Network
Address.
如果一个路由器加入了一个网络和一个复位
发生(
FR
或电),路由器将发送一个广播传输找到自己的父项
,以重新确立其操作频
道,
PAN ID
和
16
位网络地址。如果路由器不能找到它的父项,它会重
新加入网络,利用其
SC
(扫描频道)和身份证(
PAN ID
)
的设置。这可以改变路由器的
16
位网络地址。
2. Issuing an NR (Network Reset)
command with a parameter of ?0? will also cause a
Router reset. The NR command
will force
the Router to rejoin the network and it
may receive a different 16-bit Network Address. It
will also erase the Router's list of child
device addresses. This option should be
used with caution.
发送
NR
(网络复位)
'
命令的一个参数
< br>0
也将导致路由器复位。该命令将迫使
NR
路由器重新加入网络,它可能会收到一个不同的
16
位网络地址。它也将清除路由器的地址列表的子设备。此选项应谨慎使用。
3. Issuing an NR (Network Reset)
command with a parameter of ?1? will send a
command to the Coordinator instructing it to
res
et
the
entire
network.
Resetting
the
entire
network
will
reset
all
nodes
and
reform
the
P
AN
(Also
refer
to
the
“Resetting
a
Coordinator” section).
发送
NR
(网络复位)
'
与
'1
命令的一个参数将发送一个命令
,指示它的协调器重置整个网络。重置整个网络将重置所有节点和改革
PAN
(同时参阅
“
重置协调器
”
一节)。
3.2.4. Network
Mapping
网络映射
The
ND (Node Discover) command is useful for mapping
out the network. When issued from the Coordinator
or an End Device,
the command sends a
broadcast message across the network and returns a
list of all nodes. Refer to the ND command for
more
information.
ND
< br>(节点上探索)命令是有用的映射出网络。当从协调器或终端设备发出的命令在网络上发送一个广播的消息 并返回一个列表的
所有节点。指的是
ND
命令获得更多信息。
3.3. XBee/XBee-
PRO Addressing
XBee / XBee-PRO
寻址
Each RF module has a unique 64-bit
Address that is assigned at the factory that can
be read using the SH (Serial Number High)
and SL (Serial Number Low) commands.
When a module starts or joins a network, it
receives a 16-bit Network Address that is
unique within the network; however,
this address can change (refer to the ?ZigBee
Addressing? section). In addition, each
mod
ule
can store a string-
identifier using the NI (Node Identifier) command.
每个射频模块有一个唯一的
64
位地址
是分配在高数的工厂可以读取使用
SH
(串行)和
SL
(序号低)的命令。当一个模块开始或
加入一个
网络,它接收一个
16
位的网络地址是唯一的网络内,但是,这
个地址可以改变(指的
ZigBee
解决
'
一节)。
此外,每
个模块可以存储一个字符串标识符使用
NI
(节点标识符)命令。
XBee/XBee-PRO RF modules can be
addressed using their 64-bit Address, their NI-
string or both the 64-bit Address and the
16-bit
Network
Address
(API
Mode).
Under
the
ZigBee
protocol,
the
16-
bit
Network
Address
of
a
Coordinator
is
always
“0”.
Nodes can address the Coordinator using
its 16-bit Network Address.
XBee /
XBee-PRO
射频模块可以解决使用其
64
位地址,他们的
NI -
字符串或两者的
64
位地址和
16
位网络地
址(
API
的模式)。
根据
ZigBee
协议,
16
位网络地址的协调员始终是协调器。节点可以处理协调员使用其协调器的网络地址。
3.3.1. 64-bit Addressing
64
位寻址
To send a packet to an RF module using
its 64-bit Address (Transparent Mode)
要
发送一个数据包到一个射频模块采用了
64
位地址(简单模式)
Set the DH
(Destination Address High) and DL (Destination
Address Low) parameters of the source node to
match the 64-bit
Address (SH (Serial
Number High) and SL (Serial Number Low)
parameters) of the destination node.
设置
DH
(目标地址高)和
DL
(目标地址低)节点参数的来源,以配合
64
位地
址(
SH
(序号高)和
SL
(序号低)参数)的目标
节点。
To send a packet to an RF module using
its 64-bit Address (API Mode)
要发送一个数据包到
一个射频模块采用了
64
位地址(
AP
I
的模式)
Use
the
ZigBee
Transmit
Request
API
frame
to
set
the
DH
(Destination
Address
High)
and
DL(Destination
Address
Low)
parameters of the
source node to match the 64-bit Address (SH(Serial
Number High) and SL (Serial Number Low)
parameters) of
the
destination
node.
If
the
64-bit
Address
of
the
destination
node
is
not
known,
set
16-bit
Destination
Network
Address
to
0xFFFE
(refer to the ?API Addressing section
below).
使用
ZigBee<
/p>
的传输请求的
API
框架设置
DH
(目标地址高)和
DL
(目标地址低)节点参数的来源,以配合
64
位地址(
SH
(序号
高)和
S
L
(序号低)参数)的目标节点。如果目标节点的
64
位地址是不知道,设置
16
位网络地址,以
p>
0xFFFE
目的地(指
'API
的解决部分)
Since the
ZigBee protocol relies on the 16-bit Network
Address for routing, the 64-bit Address must be
converted into a 16-bit
Network Address
prior to transmitting data. If a module does not
know the 16-bit Network Address for a given 64-bit
Address, it
will
transmit
a
broadcast
Network
Address
Discovery
command.
The
module
with
a
matching
64-bit
Address
will
transmit
its
16-bit Network Address back.
由于
ZigBee
协议依赖位网络地址传输数据之前,在
p>
16
位网络地址进行路由,转换的
64
p>
位地址必须为
16
。
如果一个模块不知道
一个给定的
6
4
位地址的
16
位网络地址的,它会发
送一个广播网络地址发现命令。地址模块匹配的
64
位将其转交
的
16
位网络地
址回来。
The modules maintain a table that
can store up to seven 64-bit Addresses and their
corresponding 16-bit Network Addresses.
这些模块保持一个表,可以存储多达
7
个
64
位地址和相应的
16
位网络地
址。
3.3.2. API
Addressing
API
寻址
API Mode provides the ability to store
and maintain 16-bit Network Address tables on an
external processor. The 16-bit Network
Address information is provided to the
application through the following:
API<
/p>
的模式提供了能够存储和维护地址表对外部处理器的
16
位网络。
16
p>
位网络地址的信息提供给应用程序通过以下内容:
The ZigBee Transmit Status Frame /
ZigBee
的传输状况的框架
(contains the current 16-bit Network
Address of the remote)
(包含了目前的
16
位网络地址的远程)
p>
The ND and DN
commands
/ ND
和
p>
DN
的命令
(return 64-bit and 16-bit Network
Addresses of remote nodes)
/
(往返
64
位和
16
位网络节点地址的远程)
With
this
information,
a
table
can
be
built
in
an
application
that
maps
a
64-bit
Address
to
the
corresponding16-bit
Network
Address.
有了这些信息,可以建立一个表在应用程序
映射一个
64
位地址的
corresp
onding16
位网络地址。
The ZigBee Transmit Request API frame
specifies the 64-bit Address and the Network
Address (if known) that the packet should
be sent to. By supplying both
addresses, the module will forego Network Address
Discovery and immediately attempt to route the
data packet to the remote. If the
Network Address of a particular remote changes,
Network Address and route discovery will
take place to establish a new route to
the correct node.
API
的
ZigBee
发送请求帧指定了
< br>64
位地址和网络地址(如已知),该数据包应该发送到。
通过提供两个地址,该模块将放弃网
络地址发现,并立即试图路由数据包到远程。
如果发现网络地址的路线某偏远的变化,网络地址,并会采取地方建立一个新的路
由到正确的节点。
Upon successful packet delivery, the TX
Status Frame will indicate the correct Network
Address of the remote.
数据包传递成功后,将框架的
TX
状态显示正确的远程网络地址。
Table 3
‐
01.
Sample table mapping 64
‐
bit
Addresses to 16
‐
bit Network
Addresses
表
3 -
01
。
示例表映射
64 -
位地址到
16 -
位网络地址
Index
0
1
2
3
3.3.3. NI-
String Addressing / NI
串寻址
64-bit address
0013 4000 4000 0001
0013
4000 4000 0002
0013 4000 4000 01A0
0013 4000 4000 0220
64 bit
network address
1234
5678
A479
1F70
To send
a packet to an RF module using its NI-string
(Transparent Mode)
要发送一个数据包到一个使用它的射频模块的
NI
-
字符串(简单模式)
Issue the DN (Destination Node) command
using the NI (Node Identifier)-string of the
destination node as the parameter.
发出
p>
DN
(目标节点)命令使用
NI
(节点标识符)参数字符串作为目标节点。
To send a packet to an RF module using
its NI-string (API Mode)
要发送一个数据包到一个使用它的射频模块的
NI -
字符串(
API
的模式)
Issue the DN command as
stated above using the AT Command API frame.
发出
DN
的命令,如同上面使用
< br>AT
命令的
API
框架
When
the
DN
command
is
issued,
a
broadcast
transmission
is
sent
across
the
network
to
discover
the
module
that
has
a
matching NI (Node
Identifier) parameter. If a module is discovered
with a matching NI-string, the DH and DL
parameters will be
configured to
address the destination node and the command will
return both the 64-bit Address and the 16-bit
Network Address
of the dis-covered
node. Data can be transmitted after the DN
(Destination Node) command finishes.
当命
令发出的
DN
,广播传输在网络上发送的模块,发现了一个匹配
的镍(节点标识符)参数。
如果一
个模块参数,发现了一个
匹配的
NI
-
字符串,
DH
和
DL
将被配置到目标节点的地址和命令会同时返回的
64<
/p>
位地址和
16
位网络地址的存款保险计划
覆盖的
节点。
数据可以传送后的
DN
(目标节点)命令完成。
3.3.4. Coordinator Addressing
协调器寻址
A
Coordinator
can
be
addressed
using
its
64-
bit
address
or
NI
string
as
described
in
the
“NI
-
String
Addressing”
section.
Alternatively, since the ZigBee
Coordinator has a Network Address of “0”, it can
be addressed by its 16
-bit Network
Address.
协调器可以解决使用其
64
位地址或
NI
字符串一节中描述的
“N
I
串寻址
”
< br>。
另外,由于
ZigBee<
/p>
的协调器
0“
网络地址
”
,可以解决其
16
位网络地址。
To send a
transmission to a Coordinator using its 16-bit
Network Address:
要发送传输到协调器使用其
16
位网络地址:
Set the Destination Addresses of the
transmitting module as shown below:
设置以下目标地址发送的模块如下所示:
DL (Destination Low
Address) = 0
DL
的(目标低地址)
= 0
DH (Destination High
Address) = 0
DH
(目标高地址)
= 0
3.3.5. Broadcast
Addressing
广播地址
Broadcast transmissions are sent using
a 64-bit address of 0x0000FFFF. Any RF module in
the PAN will accept a packet that
contains
a
broadcast
address.
When
configured
to
operate
in
Broadcast
Mode,
receiving
modules
do
not
send
ACKs
(Acknowledgements).
广播传输发送使用位地址的
0x0000FFFF
64
。
任何的潘射频模块将接受的数据包包含一个广播地址。
当配置为在广播模式下,
接收模块不
发送的
ACK
(确认)。
To send a broadcast packet to all
modules
将发送广播数据包发送到所有模块
Set the Destination
Addresses of the transmitting module as shown
below:
设置以下目标地址发送的模块如下所示:
DL (Destination Low
Address) = 0x0000FFFF
DL
的(目标低地址)
=
0x0000FFFF
DH (Destination
High Address) = 0x00000000
DH
(目标高地址)
=
0x00000000
NOTE: When
programming the module, parameters are entered in
hexadecimal notation (without
the “0x”
prefix). Leading zeros
may be omitted.
注意:当编程模块,参数输入十六进制表示法(没有
“
为
0x”
前缀)。前导零可以省略。
Refer to the
“Broadcast Transmissions” section [p13] for more
information.
请参阅
“
广播传输
”
部分
[P13
的
]
获取更多信息。
3.4.
Modes of Operation
操作模式
3.4.1. Idle
Mode
空闲模式
When not
receiving or transmitting data, the RF module is
in Idle Mode. During Idle Mode, the RF module is
also checking for
valid RF data. The
module shifts into the other modes of operation
under the following conditions:
当不接收或传输数据,射频模块处于空闲模式。
在空闲模式下,射频模块,也是有效的
RF
数据检查。
以下条件的模式到其他
模块的操作下的变化:
Transmit Mode (Serial data in the DI
Buffer is ready to be packetized)
传输模式(
连续的数据在
DI
缓冲区中的数据是随时可以打包)
Receive Mode (Valid RF data is
received through the antenna)
接收模式(有效
p>
RF
数据通过接收天线)
Sleep Mode (End Devices only - not
supported in this release)
睡眠模式(仅终端设备
p>
-
不支持此版本)
Command Mode (Command Mode
Sequence is issued)
命令模式(命令模式序列)
3.4.2. Transmit
Mode
,
传输模式
When serial
data is received and is ready for packetization,
the RF module will exit Idle Mode and attempt to
transmit the data.
The destination
address determines which node(s) will receive the
data.
当串行数据接收,并打包准备,射频模块将退出空闲模式并尝试传输数据。
目标地址确定哪个节点(
s
)将接收数据。
Prior to
transmitting the data, the module ensures that a
16-bit Network Address and route to the
destination node have been
established.
在此之前的数据传输,该模块确保了一个
16
< br>位网络地址和路由到目标节点已经建立。
If the
16-bit Network Address is not known, Network
Address Discovery will take place. If a route is
not known, route discovery
will take
place for the purpose of establishing a route to
the destination node. If a module with a matching
Network Address is not
discovered, the
packet is discarded.
如果
16
位网络地址不详,网络地址发现会发生。
如
果不知道路线,路线将节点的地方发现了目标的目的建立的一个途径。如果一
个地址模块
匹配网络是没有发现,该数据包将被丢弃。
The data
will be transmitted once a route is established.
If route discovery fails to establish a route, the
packet will be discarded.
这些数据将发送一次由路线确定。
如果路由发现未能建立一个路线,数据包将被丢弃。
Figure
3
‐
04. Transmit Mode Sequence
图
3-04
。传输模式序列
When
data
is
transmitted
from
one
node
to
another,
a
network-level
acknowledgement
is
transmit-ted
back
across
the
established
route
to
the
source
node.
This
acknowledgement
packet
indicates
to
the
source
node
that
the
data
packet
was
received by the
destination node. If a network acknowledgement is
not received, the source node will re-transmit the
data.
当数据从一个节点传送到另一个,一个网络级别的确认是发送特德在既定的
路线返回到源节点。
这表明,以确
认数据包的源节点
的数据包的节点收到了目的地。
如果网络未收到确认,源节点将重新传输数据。
3.4.3. Receive Mode
接收模式
If a valid
RF packet is received and its address matches the
RF module?s MY (16
-bit Source Address)
parameter, the data is
transferred to
the DO buffer.
如果一个有效的射频数据包接收和它的地址相匹配的射
频模块的
MY
的(
16
位源地址)参数,数据传输到
DO
缓冲区。
3.4.4.
Command
Mode
命令模式
To
modify or read RF Module parameters, the module
must first enter into Command Mode
- a state in which incoming serial
characters are interpreted as commands. Refer to
the API Mode section [p29] for an alternate
means of configuring modules.
要修改或读取射频模块参数,模块必须首先进入命令模式
p>
在这个国家中,传入的串行字符解释为命令。请参考
API
的模式部分
[p29
的配置模块的备用手段
p>
]
。
.
AT
Command Mode
AT
命令模式
To Enter AT Command Mode:
<
/p>
要输入
AT
命令模式
Send the 3-
character
command sequence “+++” and observe guard times
before and after the c
ommand
characters. [Refer to
the “Default AT
Command Mode Sequence” below.
发送
3
个字符的命令序列
和观察保护次数时代之前和之后的命令字符。
[
参照
“
默认
AT
命令模式序列
”
< br>下面。
Default
AT Command Mode Sequence
(for transition to Command Mode):
默认
AT
命令模式序列模式(过渡到命令):
? No characters sent for one second [GT
(Guard Times) parameter = 0x3E8]
0x3E8]
次发出任何字符一秒钟
[GT
(保护次数)参数
=0x3E8
? Input three plus characters (“+++”)
within one second [CC (Command Sequence Character)
parameter = 0x2B.]
输入三加一秒钟之内
的字符
(
(命令序列字符)参数
=
0x2B
。
]
? No characters sent for one second [GT
(Guard Times) parameter = 0x3E8]
没有字符发送一秒钟
[GT
(保护次数)参数
p>
=0x3E8]
All of the parameter
values in the sequence can be modified to reflect
user preferences.
序列中的所有值的参数可以被修改,以反映用户的喜好。
NOTE: Failure t
o enter AT
Command Mode is most commonly due to baud rate
mismatch. Ensure the ?Baud? setting on the “PC
Settings” tab matches the interface
data rate of the RF module. By default, the BD
parameter = 3 (9600 bps).
注意
:未能进入
AT
命令模式是最常见的原因波特率不匹配。
确保
'
波特
'
标签上设置的
“
电脑设定
”
匹配的射频模块接口数据速
率。
默认情况下,
BD
参数
= 3
(
9600
个基点)。
To Send AT Commands:
发送
AT
命令:
Send
AT commands and parameters using the syntax shown
below.
发送
AT
命令和参数使
用下面的语法。
Figure
3
‐
05. Syntax for sending AT
Commands
图
3 - 05
。
发送
AT
命令语法
To read a parameter value
stored in the RF module?s register, omit the
parameter field
要阅读一个参数值寄存器存储在射频模块,省略参数字段
The preceding example would change the
RF module Destination Address (Low) to
“0x1F”. To store the new value to
non
-volatile
(long
term)
memory,
subsequently
send
the WR
(Write)
command.
For
modified
parameter
values
to
persist
in
the
module?s
registry after a reset, changes must be
saved to non-volatile memory using the WR (Write)
Command. Otherwise, parameters
are
restored to previously saved values after the
module is reset.
前面的例子将改变射频
模块目的地地址(低)到
“0x1F”
。存储新价值的非挥发性
(长期)记忆体,随后又将其送回
WR
(写入)命
令。
对于修改后的参数
值注册表坚持在模块的复位后,改变必须保存到非易失性内存使用
WR
< br>(写入)命令。
否则,参数
都恢
复到以前保存的值后,模块复位。
System Response.
When a
command is sent to the module, the module will
parse and execute the command. Upon successful
execution of a c
ommand, the
module returns an “OK” message. If execution of a
command results in an error, the module returns
an “ERROR” message.
< br>系统响应。
当一个命令发送到模块,该模块将解析并执行该命令。
当一个命令成功执行的,模块返回一个
“
行
”
的消息。
如果错误
执行结果在一个命令,模块
返回一个
“
错误
”
消息。
To Exit AT
Command Mode:
要退出命令模式:
1. Send the ATCN (Exit Command Mode)
command (followed by a carriage return). [OR]
发送
ATCN
(退出命令模式)命令(随即回车返回)
[OR]
2.
If no valid AT Commands are received within the
time specified by CT (Command Mode Timeout)
Command, the RF module
automatically
returns to Idle Mode.
如果没有有效的
AT
命令是通过
CT
内收到指定的时
间(命令模式超时)命令,射频模块自动返回到空闲模式。
For an example of programming the RF
module using AT Commands and descriptions of each
config-urable parameter, refer to
the <
/p>
对于一个编程的射频模块使用
AT
命令和
每个配置参数说明例子,指的是
“
射频模块配置
”
一章
[p24
的
]
。
3.5.
Network Startup
Examples
网络启动的例子
1. Determine the operating channels
list using the SC (Scan Channels) command and the
PAN ID to operate using the ID (PAN
ID)
command. The default SD (Scan Duration) parameter
value should suffice. If these values are changed
from the defaults,
they must be written
to non-volatile memory using the WR (Write)
command.
确定名单的操作频道使用的
SC
(扫描频道)命令和潘
ID
来操作使用的
ID
(
PAN
ID
)命令。
默认
SD
(
扫描时间)参数值应该
足够了。
<
/p>
如果这些值改为默认的,他们必须写入非挥发性记忆体使用
WR<
/p>
(写入)命令。
2.
The
Associate
LED,
if
enabled
using
the
D5
(DIO5
Configuration)
parameter,
will
start
blink-ing
1x
per
second
once
the
Coordinator has started. If API is
enabled (AP parameter > 0): The API Modem Status
“Coordinator Started” is sent out the UART.
状态发光二极管,如果启用使用
D5
座(
DIO5
配置)参数,
将启动
1
倍每秒闪烁,一旦协调器已经开协调器<
/p>
如果
API
是
启用(
AP
参数
> 0
):
API
的调制解调器状态
“
协调器启动
”
协调器的
UART
。
3. The
AI (Association Indication) parameter will be 0
signifying a successful startup.
AI
(指示)参数为
0
,
标志着一个成功启动。
4. The MY (16-bit
Source Address) attribute is 0 (the 16-bit Network
Address of a ZigBee Coordinator).
在
MY
的(
16
位源地址
)属性为
0
(
16
位网络地址的
ZigBee
的协调器)
。
5. After startup, the
Coordinator will allow joining based on its NJ
(Node Join Time) value.
启动后
,协调器将允许协调器加入
NJ
(节点加入时间)值。
6. It is recommended that the
Coordinator be configured with an NI-String
identifier. This NI-String identifier should be
written to
non-volatile memory using
the WR (Write) command to be preserved through
power-loss.
建议协调器与一
NI
串标识符配置。这
NI
串标识符应写入非挥发性记忆体
使用
WR
(写入)命令将通过功率损耗保存。
< br>
Adding a Child (Router)
添加了一个子项(路由器)
1.
Determine
the
operating
channel
list
(SC)
and
the
desired
PAN
ID
to
join
(ID)
(0xFFFF
-
join
any
Pan).
The
default
SD
parameter should suffice. If these
values are changed from the defaults, they must be
written to non-volatile memory using the
WR (Write) command.
确定操作频道列表(
SC
)和所需的
< br>PAN
ID
来加入(身份证)(
0xFFFF
的
-
加入任何盘)。<
/p>
默认
SD<
/p>
参数就足够了。
如果这
些值改为默认的,他们必须写入非挥发性记忆体使用
WR
(写入)命令。
2. The
Router, on power-up, will attempt to locate a
parent to join according to its SC and ID
parameters.
该路由器得电,将试图找到一个父
项根据其加入
SC
和
ID
参数。
3. Once the Router
has joined a parent, the Associate LED, if enabled
(D5), will start blinking 2x per second. The ID
and CH
parameters will reflect the
operating PAN ID and Channel. The MY parameter
will reflect the 16-bit Network Address of the
Router.
The MP command returns the
16-
bit Network Address of the Router?s
parent (node it joined to). If API is enabled (AP
parameter >
0): The API Modem Status
“Joined” is sent out the UART.
一旦路由器加入了一个父项,
状态发光二极管,
如果启
用
(
D5
)
的
,
将启动第二闪烁每
2
倍。
该
ID
和
CH
参数将反映经营
PANID
和频道。
该参数将反映
MY
p>
的网络地址的路由器
16
位。
在
MP
命令返回路由器的
父项的
16
位网络地址(节点加入到它)。
如
果
API
是启用(
AP
参数
> 0
):
API
的调制解调器状态
< br>“
进入
”
,是发出了
UART
的。
4.
If the Router is not joining as expected, the AI
(Association Indication) parameter can be read to
determine the cause of failure.
Verify
the PAN contains a Coordinator or nearby joined
Router that has matching Channel (SC, CH) and PAN
ID (ID) settings and
is allowing nodes
to join to it (NJ parameter).
< br>如果路由器不加入如预期,
AI
(整体指示)参数可以被
理解为确定故障原因。
验证
PAN
包含一个协调器或附近协调器由器具有
匹配频道(
SC
,
CH
)和
PAN
识别码(
ID
p>
)的设置,并允许节点加入到它(
NJ
参数
)。
5. Once the Router has
joined a PAN, the Router will allow joining based
on the NJ parameter.
一旦路由器已加入了
PAN
,路由器将允许位于
NJ
的
基础上加入参数。
6. It is
recommended that the Router be configured with a
unique NI-String identifier. This NI-String
identifier should be written to
non-
volatile memory using the WR (Write) command to be
preserved through power-loss.
这是建议,路由器是一个独特的
NI
-
串标识符配置。这
NI
串标识符应写
入非挥发性记忆体使用
WR
(写入)命令将通过功率损耗
保存。
Transmit
Data
发送数据
1. Start a Coordinator
(refer to instructions above).
启动一个协调器(参阅协调器说明书)
2. Add one or more Child Router(s) to
the Coordinator (refer to instructions above).
添加一个或多个子项路由器的协调器(参阅协调器说明书)
3. Once the Coordinator has started,
all Routers and End Devices should join to a
parent and their Associate LED should blink 2x
per second.
一旦协调
器已经开始工作,所有的路由器和终端设备应加入到他们的父项和状态
LED
应每秒闪烁
2
倍。
4. If any nodes have not joined, read
the AI command to determine why.
如果任何节点都没有加入,请阅读
AI
命令,以确
定原因。
5. Issue the ATND
command on the Coordinator to get a list of all
nodes on the network.
发出
ATND
命令在协调器上获得网络列表上的所有节点。
6. Use the ?Terminal? tab of the
X
-CTU Software to send serial data
between nodes. The data should be transmitted from
the
source to the destination node as
specified by the DH & DL parameters.
使用
'
终端
'
软件
标签的
X-CUT
发送节点之间的串行数据。
< br>
这些数据应转交从源头到目的地节点作为参数指定的
DH
和
DL
7. (Optional) Change the Desination
Address on any node to one of the 64-bit Addresses
dis-coverd using the ND command in
step
5 (
DH, DL Commands, or in the ?ZigBee
Transmit Request? API Frame). Then repeat step 6
to transmit data.
(可选)更改任何节点
Desination
地址到一个
64
位地址解散盖起来使用在步骤
ND
命令
5
(
DH
,<
/p>
DL
的命令,
或在
'ZigBee
的传输
请求的
API
框架)。
然后重复步骤
6
以传输数据。
4. RF Module Configuration
射频模块配置
Two
command
mode
protocols
are
supported
by
the
XBee/XBee-PRO
RF
Modules:
AT
and
API.
The
AT
Command
Mode
protocol
[p22] is
printable
and
is
intended
for
manual
entry of
commands
and
viewing parameter
values.
The
API
Command
Mode protocol [p29] is a binary
protocol and is intended for programmatic gets and
sets of values. Each command mode protocol
requires its own firmware version.
Refer to the VR (Firmware Ver-sion) command in the
Diagnostics table to determine firmware
versions.
两个命令模式协议支持的
XBee / XBee - PRO
RF
模块:在和
API
。
AT
命令模式协议
[P2
2
的
]
是打印并手工输入命令和参数值
打
算观看。
API
的命令模式协议
p>
[p29]
是一个二进制协议,并且对方案旨在获取和价值套。每个
命令模式协议要求它自己的固件版本。
指的是虚拟现实(固件版本)的诊断表命令,以确
定固件版本。
4.1. AT Command
Programming Examples
AT
命令编程示例
Refer to the
?X
‐
CTU? section of the
Development Guide [Appendix
B] for more
information regarding the
X
‐
CTU configuration
software
参阅的
X -CT
U'
的发展指南
[
附录
B]
部分,了解有关的
X
-CTU
的配置软件的信息
Setup
设置
The programming examples in this
section require the installation of MaxStream's
X-CTU Soft-ware and a serial connection to a
PC. (MaxStream stocks RS-232 and USB
boards to facilitate interfacing with a PC.)
本节中的编程示例要求
MaxStr
eam
的洁具安装的
X
-
CTU
软件和一个串行连接到电脑上。
(
MaxStream
的串口的
RS
-
232
和
USB
接口的
PC
板,以方便用。)
1.
Install
MaxStream's
X-CTU
Software
to
a
PC
by
double-clicking
the
file.
(The
file
is
located
on
the
MaxStream
CD and under the 'Software' section of the
following web page:
/support/
)
安装
MaxStream
的
X -
CTU
软件到个人电脑的一个文件双击
“setup_X
-
”
。
(该文件位于
MaxStream<
/p>
的
CD
和在
'<
/p>
软件
'
条的规定,下列网页
/support/
)
2. Mount the
RF module to an interface board, then connect the
module assembly to a PC.
射频模块装入一个接口板,然后连接模块组装到电脑。
3. Launch the X-CTU Software and select
the 'PC Settings' tab. Verify the baud and parity
set-tings of the Com Port match those
of the RF module.
推出的
X - CTU
软件,并选择<
/p>
'
电脑设定
'
标
签。验证波特率和奇偶设置的
COM
端口直至今天为止匹配的射
频模块的。
NOTE: Failure to enter
AT Command Mode is most commonly due to baud rate
mismatch. Ensure the ?Baud? setting on the ?PC
Settings? tab matches the interface
data rate of the RF mod
-ule. By
default, the BD parameter = 3 (which corresponds
to 9600
bps).
注意:未能进入
AT
命令模式是最常见的原因波特率不匹配。确保
'<
/p>
波特
'
设置的
'
电脑设定
'
标签匹配的射频模块接口的
数据速率。默
认情况下,
BD
参数
p>
= 3
(相当于
9600
< br>个基点)
。
Sample
Configuration: Modify RF Module Destination
Address
示例配置:修改目标地址射频模块
Example: Utilize the X-
CTU
“Terminal” tab to change the RF module's DL
(Destination Address Low) parameter and save the
new
address to non-volatile memory.
After establishing a serial connection between the
RF module and a PC [refer to the 'Setup'
sec-
tion above], select the
“Terminal” tab of the X
-
CTU
Software and enter the following command lines
(?CR? stands for carriage
return):
例如:利用了
X
-CTU
的
“
终端
”
选项卡以更改射频模块的
DL
的(目标地址低)的参
数并保存新的地址,非易失性内存。在建立一
个与射频模块和
P
C [
串行连接指的是
'
上面
]
安装程序
'
部分,选
择
“
终端
”
的
X - CTU
软件选项卡,然后输入下面的命令行(
'CR'
代表
回车
Method 1 (One line per command)
Send AT Command
+++ ATDL
System Response
OK
(Modify Destination Address Low) OK
方法
1
(每行一个命令)
发送
AT
命令
+ + + ATDL
回车
ATDL1
A0D
回车
ATWR
回车
ATCN
回车
系统响应
<
/p>
(行输入命令
模式)
()
当前值
(了
解目的地地址低)
命令行模式
(修改目标地址低)
确定
(写
入非挥发性
(退出内存)
行
)
Method
2
(Multiple
commands
on
one
line)
Send
AT
Command
+++
ATDL
ATDL1A0D,WR,CN
System
Response
OK
OK
方法
2
(
(多个命令在一行)
发送
AT
命令
+ + + ATDL
回车
ATDL1
A0D
,水利,架
CN
回车键
响应
行
系统
进入命令模
式)
()
当前值(读取目标地
址低)确定
行
行
Sample Configuration: Restore RF Module
Defaults
示例配置:恢复默认射频模块
Example:
Utilize
the
X-
CTU
“Modem
Configuration”
tab
to
restore
default
parameter
values.
After
establishing
a
connection
between the
m
odule and a PC [refer to the 'Setup'
section above], select the “Modem Configuration”
tab of the X
-CTU Software.
1. Select the 'Read' button. 2. Select
the 'Restore' button.
如:
利用了<
/p>
X-
CTU“
调制解调器配置
”
标签,
以恢复和
PC
[
默认参数值模块。
建立连接后,
与参
考
'
一节
]
设
置
'
,
选择
“
调制解调器配置
”
选项卡上的
X - CTU
软件。
1
。
选择
'
读<
/p>
'
按钮。
2
。
p>
选择
'
还原
'
p>
按钮。
4.2. Command
Reference Tables
命令参考表
XBee/XBee-PRO RF Modules expect
numerical values in hexadecimal. Hexadecimal
values are des-
ignated by a “0x”
prefix.
Decimal equivalen
ts
are designated by a “d” suffix. Table rows are
sorted by command category, then by logic of most
commonly
used.
XBee
/
XBee
的专业射频模块预计在十
六进制数值。十六进制值指定一个
“
为
0x”
前缀。十进制等值被指定由
“D”
类后缀。表行是
按命令的类别,然后按最常用的逻辑。
Special
专用
Table
4
‐
02. Special Commands
表
4 -
02
。专用命令
AT
Command
Name and Description
名称和说明
命令类别
Write
. Write parameter
values to non-volatile memory so that
parameter modifications persist through
a subsequent resets.
Note: Once WR is
issued, no additional characters should be
WR
Special
sent
to the module until after the
写入
。
写参数值的非挥发性记忆体参数的修改,以便通过随
后的重置坚持。
注意:一旦
WR
发出后,没有额外的字
符应该被发送到模块后,
才
“
确定
p>
r”
开始收到响应
Restore
Defaults
.
Restore
module
parameters
to
factory
RE
Special
defaults. RE command
does not reset the ID parameter.
还原为默认值
。
还原到
出厂默认设置模块参数。
RE
命令不
重
置
ID
参数。
FR
Special
Software
Reset
.
Reset
module.
Responds
immediately
with
CRE
-
-
CRE
-
-
CRE
-
-
Node
Type1
节点类型
1
Parameter
Range
参数范围
Default
默认
Command
Category
an
“OK”
then
performs
a
reset
~100ms
later.
Use
of
the
FR
command
will cause a network layer restart on the node if
SC
or ID were modified since the last
reset.
软件复位
。
复位模
块。立即作出回应的
“
确定
”
,然后执行复
位
?
10
0
毫秒之后。
命令使用的
FR
会导致网络层节点上重新启
动如果
SC
或身份证被重新修改,因为是最后一次。
Network
Reset
.
Reset
network
layer
parameters
on
one
or
more
modules
within
a
PAN.
Responds
immediately
with
an
“OK” then
causes a network restart. All network
configuration
and routing information
is consequently lost. If NR = 0: Resets
network layer parameters on the node
issuing the command.
This option is
only supported on Routers and End Devices and
must
be
used
with
caution.
Refer
to
the
“Resetting
NR
Special
Coordinator”
section
for
more
information.
If
NR
=
1:
Sends
broadcast transmission
to reset network layer parameters on
all nodes in the PAN.
立即回应一个
“
行
”
,那么
会导致网络重新启动。
所有网络配置
和路由信息从而丧失。
如果
NR=
0
:重置网络层参数的命令
发出的节点。
此选项仅支持路由器和终端设备,必须谨慎使
用。参照重置协调器
“
一节以获取更多信息的<
/p>
”
。如果
NR= 1
:重
置发送广播传输网络中的所有节点
PAN
层参数研究。
1. Node types
that support the command: C = Coordinator, R =
Router, E = End Device
节点类型,支持命令:
C =
协调器,
R=
路由器,
E=
电子终端设备
Networking &
Security
网络与安全
Table 4
‐
03.
Networking Commands
(Sub
‐
categories designated
within {brackets})
表
4
月
3
日。网络命令(子类别指定括号内())
AT
Command
Name
and Description
名称和说明
Node
Type1
Parameter
Range
Default
默认
Command
Category
RE
(when
NR=0),
CRE
(when
0-1
-
网络复位
。
更多的模块复位网络层参数的一个或在
PAN
。
NR=1)
命令类别
Operating
Channel
.
Read
the
channel
number
used
for
transmitting and receiving between RF
modules. Uses 802.15.4
CH
Networking
{Addressing}
channel numbers.
作业通道
。
阅读频道号码用于发射和接收单元之间的射频。
利用
802.15.4
通道数。
节
点
类
型
1
参数范围
0,
0x0B-0x1A
(XBee)
0,
CRE
0x0C-0x17
(XBee-PR
O)
[read-
only]
0
PAN
ID
.
Set/Get
the
PAN
(Personal
Area
Network)
ID.
Coordinator
- Set the
preferred Pan ID. Set (ID = 0xFFFF) to
auto-select.
Router
/
End
Device
-
Set
the
desired
Pan
ID.
When the device searches for a
Coordinator, it attempts to only
join
to a parent that has a matching Pan ID. Set (ID =
0xFFFF)
to join a parent operating on
any Pan ID. Changes to ID should
be
written to non-volatile memory using the WR
command. ID
ID
Networking
{Addressing}
changes
are
not
used
until
the
module
is
reset
(FR,
NR
or
power-up).
PAN
的
ID
。
设置
/
获取
PAN
(个人区域网络)
的
ID
。
协调器
-
设
置首选
PAN
身份证。
套装
(编号
=
0xFFFF
的)
为自动选择。
CRE
0 - 0x3FFF,
0xFFFF
0x0123
(291d)
路由器
/
终端设备
-
设置所需的泛身份证。
当一个协调器的设备
进行搜索,
p>
它试图加入到父只具有一个匹配的
PAN
身
份证。
套
装(编号
=
0xFFFF
的)加入泛编号父项经营的任何。
身份证
变更应写入非挥发性记忆体使
用
WR
命令。
身份证更改不使用,
直至该模块复位
(
FR
,
NR
或
power-up
)。
Destination
Address
High
.
Set/Get
the
upper
32
bits
of
the
64-bit destination address. When
combined with DL, it defines
the
Networking
{Addressing}
destination
address
used
for
transmission.
0 -
CRE
0xFFFFFF
FF
0
0xFFFF
is
the
broadcast
address
for
the
PAN.
DH
2
DH is not supported in API
Mode. 0x0000 is the
Coordinator?s
16
-bit Network Address.
目的地地址高
。
设置<
/p>
/
获取位目标地址的高
32
位的
64
。
当
DL
的<
/p>
结
合
,
它
定
义
传
输
的
目
的
地
址
使
用
。
0xFFFF
是广播地址的<
/p>
pan
的。
DH
不支持
API
的模式。
0x0000
是协调器的
16
位网络地址。
Destination
Address
Low
.
Set/Get
the
lower
32
bits
of
the
64-bit destination address. When
combined with DH, DL defines
the
destination
address
used
for
transmission.
0xFFFF
0 -
CRE
0xFFFFFF
FF
(Coordi
nator) 0
(Router/
End
Device
0xFFFF
is
the
broadcast
address
for
the
PAN.
DL
2
Networking
{Addressing}
DL is not
supported in API Mode. 0x0000 is the
Coordinator?s 1
6-bit Network
Address.
目标地址低
。
设置<
/p>
/
获取低
32
位
地址的
64
位目的地。
当
DH
结合
,
DL
的定义目标地址中使用传输。
0xFFFF
是
广
播
地
址
的
pan
的
。
DL
是
不<
/p>
支
持
的
API<
/p>
模
式
。
0x00
00
是协调器的
16
位网络地址。
p>
MY
Networking
{Addressing}
16-bit
Network
Address.
Get
the
16-bit
Network
Address
of
the module.
16
位网络地址。
获取网络地址的模块
16
位。
CRE
0 - 0xFFFE
[read-only]
0xFFFE