关键词不能为空

当前您在: 主页 > 英语 >

托卡马克磁场位形中带电粒子的运动解读

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-02-01 18:08
tags:

-

2021年2月1日发(作者:dressed)


托卡马克磁场位形中带电粒子的运动



王中天



核工业西南物理研究院



(2007< /p>


年核聚变与等离子体物理暑期讲习班


)



Particle Dynamics in Tokamak Configuration




. Charged particle motion in a general magnetic field


1. Larmor orbits


Particle in the magnetic field satisfies the equation of motion,


?


?


?


d


?


m


?


e


?

< br>?


B



dt




















(1.1.1)


?


?



where


m


is


the


mass,


e


is


the


charge,


is


the


velocity


?


B



is


the


magnetic


field.


If


the


magnetic


field


is


uniform


in


z-direction


the


components of the equation are


















d


?


x


?


?


c


?


y



dt


d


?


z


?


0



dt


m


,




d


?


y


dt


?


?


?


c


?


x













(1.1.2)



























(1.1.3)


eB


where


?


?



is the cyclotron frequency. The solutions are


?


x


?


?

?


sin


?


c

t


,



?


y


?


?


?


c os


?


c


t
















(1.1.4)


?


z


?


const


.

< p>






























(1.1.5)



The equation (1.14) can be integrated,

















x


?


?


?


cos


?


c


t





y


?


?


s


i


n


c


t
















(1.1.6)


where


?


?


?


?


m


?


?



is


the


Larmor


radius.


Thus


the


particle


has


a


?


?


c


eB


helical orbit composed of the circular motion and a constant velocity


in the direction of the magnetic field.




2. Particle drifts





The


particle


orbits


calculated


in


last


section


resulted


from


the


assumption


of


a


uniform


magnetic


field


and


no


electric


field.


The


charged


particles


gyrate


rapidly


about


the


guiding


centre


of


their


motion.


The


perpendicular


drifts


of


the


guiding


centre


arise


in


the


presence of any of the following [1]:


1)



an electric field perpendicular to the magnetic field;


2)



a gradient in magnetic field perpendicular to the magnetic field;


3)



curvature of the magnetic field;


4)




a time dependent electric field.


The drift velocity for each case is derived below.



?

?


E


?


B



drift


If


there


is


an


electric


field


perpendicular


to


the


magnetic


field


the


particle orbit undergo a drift perpendicular to both fields. This is the


so-called


?


?

< p>
E


?


B



drift.





The equation of motion is < /p>


?


?


?


?


d


?


m


?

< p>
e


(


E


?


?


?


B


)


dt





























(1.2.1)


Choosing


the


z


coordinate


along


the


magnetic


field


and


the


y


coordinate


along


the


perpendicular


electrical


field,


the


components


of Eq.(1.2.1) are













d


?


m


x


?


e


?


y


B


,


dt





m


d


?


y


dt


?


e


(


E


?

< p>
?


x


B


)





The solution of the equations can be written


E













?


x


?


?


?


sin


?


c


t


?


,




?


y


?


?


?


cos


?


c


t














(1.2.2)


E


B


B



is the


?


?

< br>E


?


B



drift which is independent of the charge, mass, and


energy of the particle. The whole plasma is therefore subject to the


drift.


?


B



drift


If


the


magnetic


field


has


a


transverse


gradient,


this


leads


to


a


drift perpendicular to both the magnetic field and its gradient.


Taking


the


magnetic


field


in


z


direction


and


its


gradient


in


y


direction, the y component of the equation of motion is


m


d


?


y


dt


?

< p>
?


e


?


x


B
























(1.2.3)


where













B


?


B


0


?


B


?


y









?


x


?


?


x


0


?


?


d










(1.2.4)



The unperturbed motion of the particle is written by


?


x


0


?


?


?< /p>


sin


?


c


t< /p>


,


y


?


?


sin


?


c


t














(1.2.5)


We assume that both the gradient


we have


B


?


y



and drift


?


d



are small, then,


m


d


?< /p>


y


?


?


?


x


0


B


0

< p>
?


?


x


0


B


?


y


?

?


d


B


0



e


dt












(1.2.6)


Taking the time average gives the drift



















?


d


where

?


?


m


?


?


eB


?


?


1


B


?


?


B


?


?


?



2


B


2





















(1.2.7)


, the ion and electron have opposite drift because of


the charge.


Curvature drift





When a particle



s guiding center follow a curved magnetic field


line it undergoes a centrifugal force




?

2


?


?


d


?


?


m


?


//


?


m


?


i


c


?


e


(


?


?


?


B


)



dt


R














1.2.8




where


?


i


c



is the unit vector outward along the radius of the curvature.


?


?< /p>


E


?


B



It


is


similar


to


Eq.(1.2.1)


for


the


case


of


the


force


by


eE


drift


with


the


2



replaced


m


?


//


/


R


.


By


analogy


the


curvature


drift


is


given


2


?


//





















(1.2.9)


?


d


?


?

c


R


Since


?


c



takes


the


sign


of


the


charge,


the


electron


and


ion


have


opposite


drift,


the


drift


direction


is


system,


?


B



?


?


e


i


c


?


B


.


For


axisymmetric


drift


and


curvature


drift


are


in


same


direction.


I


will


show you later.


Polarization drift





When an electric field perpendicular to the magnetic field varies


in time it results in what is called the polarization drift. The name is


given


from


the


fact


the


ion


and


electron


drifts


are


in


opposite


direction and give rise to a polarization current.



The equation of motion is


?< /p>


?


?


?


d


?


m


?


e

< p>
[


E


(


t


)


?


?


?

B


]



dt














(1.2.10)


The


electric


field


can


be


transformed


away


by


moving


to


an


accelerated frame having a velocity


?


?


?


E


?


B


?

< p>
f


?



B


2


















(1.2.11)


The equation of motion is then

< br>?


?


?


d


?


m


d


E


?


m


?


e


?


?


B


?


2


?


B



dt

< p>
B


dt


?















(1.2.12)


?


e


E



This


equation


is


similar


to


Eq.(1.2.1)


with


?


m


d


E


?


?


2


?


B


. The polarization drift is therefore


B


dt


being


replaced


by










?


?


?


?


m


d


E


1


d


E



?


d

< br>?


?


2


(


?


B


)


?


B


?


?


c


B


dt


eB


dt


?< /p>

















(1.2.13)


The


polarization


current,


which


play


an


important


role


in


the


neoclassical tearing modes, is



?


?


?


d


E


j


p


?


m



B


2


dt





















(1.2.14)


where


?


m



is the mass density.



. Charged Particle motion in Tokamak Configuration


1. Hamiltonian Euations


Various


equivalent


forms


of


equations


of


motion


may


be


obtained by coordinate transformations. One such form is obtained


by introducing a lagrangian function


?


,


t


)


?


T


(


q


?

< br>)


?


U


(


q


,


t


)



L


(


q


,


q

















(2.1.1)


?



are the vector position and velocity over the all


where the


q



and


q


degrees of freedom, T is the kinetic energy, U is the potential energy,


and


any


constraints


are


assumed


to


be


time


independent.


The


equations of motion are, for each coordinates,


q


i






















d


?


L


?


L


?


?


0



?


i


?


q


i

< br>dt


?


q




















(2.1.2)


which is derived from a variation principle (


?


?


Ldt


?


0


).





If we define the Hamiltonian by


?


i


p


i

?


L


(


q


,


q


?


,


t< /p>


)



H


(


p


,


q


,

< p>
t


)


?


?


q


i















(2.1.3)


where


?


i


?


p


?


L


?


q


i


. According to Eq.(2.1.2), we get a form of equations


of motion by Hamiltonian,


?


i


?


?

< p>
p


?


H


?


q


i























(2.1.4)


?


i


?


q


?


H

?


p


i

























(2.1.5)


The set of p and q is known as generalized momenta and coordinates.


Eqs. (2.1.4) and (2.1.5) are Hamiltonian equations. Any set variables


p and q whose time evolution is given by Eqs. (2.1.4) and (2.1.5) is


said to be canonical with


p


i



and


q


i



said to be conjugate variables.



2. Canonical transformation




In


tokamak


configuration,


the


relativistic


Hamiltonian


of


a


charged particle can be expressed as


e


e


e


2


4


H


?


[(

< p>
P


R


?


A


R


)


2


?

(


P


Z


?


A


Z


)


2


?< /p>


(


P


?


?


RA


?


)


2


/


R


2


]


c


2


?


m

< br>0


c


?


e


?



c


c


c



(2.2.1)


where


A


R


,


A


Z


,


and


A


?



are


the


vector


potential


components


of


the


magnetic field,


?


is the electrical potential,


m


0



is the rest mass, and


e is the charge. P


R


??


P


????


P


Z,


??


are the canonical momenta conjugate to


R,


???


and Z respectively,

< p>
P


R


?


m


0


u


R


?

e


A


R




c



























(2.2.2)

























(2.2.3)



e


P


?


?


Rm

< br>0


u


?


+


R


A


?




c



P


Z


?


m


0


u


Z


?


A


Z





























(2.2.4)


where


u


?


??



e


c


and


?


?


(


1


?< /p>


u


2


/


c


2


)


1


/

< p>
2



is the relativistic factor.


The magnetic field can be expressed as



B


?< /p>


?


?


?


?


?


?


I


?

< p>
?



























(2.2.5)



where


??


is


related


to


the


poloidal


flux


of


the


magnetic


field,


I


is


related


to


the


poloidal


current,


R


is


the


major


radius.


Then,


in


tokamaks we have




A


R


?


0



,



A


Z< /p>


?


?


I


ln


R


?



,



A


?< /p>


?


?




R


0


R














(2.2.6)


“There


has


been


a


gradual


evolution


over


the


years


away


from


the


averaging


approach


and


towards


the


transformation


approach” said Littlejohn


[2]

-


-


-


-


-


-


-


-



本文更新与2021-02-01 18:08,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/594324.html

托卡马克磁场位形中带电粒子的运动解读的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文