关键词不能为空

当前您在: 主页 > 英语 >

海洋生物群落中的种间关系

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-02-27 17:32
tags:

-

2021年2月27日发(作者:代付)









< br>种








第一节



种间食物关系




?




?



?



?



?



?




种间关系是指不同物种种群之间的相互作用。



一、食物关系的生态学意义



二、海洋动物食性的基本类型



三、海洋动物对食物的选择性



四、海洋动物食性的特化



五、海洋动物食性的转化





?



本章教学目的及基本要求:







通过本 章的学习,


掌握生物群落中种间关系的类型、


种间食物关系


的生态学意义、捕食者与被食者的辨证关系;种间竞争的基本原理、


生态位的基本概念、生态位分化的主要方式。



?



本章重点、难点:






重点:种间食物关系;种间竞争与生态分离。








难点:有关模型的生物学意义。





第一节



种间关系的类型



?



一、捕食(营养关系)



?



二、竞争



?



三、互利



?



四、共栖(偏利)



?



五、寄生



?



六、偏害



?



七、中性现象




1


、捕食(营养关系)








一种生物以另一种生物为食物(营养)。





2


、竞争










同种或异种的两个或更多个个体间 发生对于资源(栖息空间、


食物)的争夺。










牡蛎< /p>


——


藤壶;










罗非鱼的领域性




3


、互利










两种生物以某种方式生活在一起,对双方都有利。







珊瑚礁大型鱼类


——



医生








虎鮋


——


水螅





(转移栖息场所和提供伪装)







双锯鱼


——


海葵





(吸引饵料生物并分享)



鳑鲏


——


河蚌








蚌的呼吸水流给鳑鲏卵供氧,鳑鲏体表作为稚贝附着基




4


、共栖(偏利)










两种生 物以某种方式生活在一起,对一方有利,对另一方


无害。







鲨鱼


——


领港鱼;







鲨鱼


——


鮣鱼;







军舰鱼


——


葡萄牙军舰水母








海参


——


潜鱼



5


、寄生







通常是一物种对另一物种构成有害影响。



6


、偏害




1



两种生物以某种方式生活在一起,


对一方有害,


对另一方无影响。




2


)甲物种通过乙物种对丙物种产生危害 ,乙物种不受影响。








贝毒危害人类。



7


、中性现象








彼此互不影响。空间和食物的利用不产生竞争



第二节



种间食物关系



一、种间食物关系的生态学意义



1.



个体水平上:











食物是动物需要的营养物质的主要来源,


也是动物有机体与外


界环境之间最普遍的联系。



2.



种群水平上:











食物联系直接或间接地决定种间矛盾斗争的发展和变化。


这种


食物关系往往起到


:







优存劣汰








种群数量调节








共同进化(协同进化)。




协同进化(


coevolution)



3.



群落水平上:








食物联系是影响群落的结构与动态的重要调节因素。


捕食者与被食者 有


一定程度相互依赖的辩证关系,这种食物关系是维持群落稳定性的一个


重要机制。




4.



生态系统水平上:








食物联系是生态系统物流和能流的主要途径,


通过食物联系,


生态系统


生物能够有规律地依次利用从 自然界得到的物质和能量,这些物质和有


规律地循环与流动,是生态系统赖以生存与发展 的基本条件。




一、捕食作用



1


捕食者与猎物的协同进化



协同进化(


coevolution)


Red Queen Hypothesis


?



The


on coevolution.



?



The original idea is that coevolution could lead to situations for which the probability of


extinction is relatively constant over millions of years (Van Valen 1973).



?



The gist of the idea is that, in tightly coevolved interactions, evolutionary change by one


species (e.g., a prey or host) could lead to extinction of other species (e.g. a predator or


parasite), and that the probability of such changes might be reasonably independent of


species age.


?



Van Valen named the idea


species had to


data.)






?



The other idea is that coevolution, particularly between hosts and parasites,


could lead to sustained oscillations in genotype frequencies (Fig. 1).



?



This idea forms the core for one of the leading hypotheses for the persistence of


sexual reproduction see Bell 1982). In species where asexual reproduction is


possible (as in many plants and invertebrates), coevolutionary interactions with


parasites may select for sexual reproduction in hosts as a way to reduce the risk


of infection in offspring.



?



There have been many important cont


?



ributors to the Red Queen hypothesis as it applies to sex. W.D. Hamilton and


John Jaenike were among the earliest pioneers of the idea.




?



Figure 1. Red Queen dynamics: results from a computer simulation for host-parasite


coevolution.



?



The blue line gives the frequency of one host genotype;


?



the red line gives the frequency of the parasite genotype that can infect it.


?



Note that both genotypes oscillate over time, as if they were



?



The model assumes that hosts have self-nonself recognition systems, which can detect


foreign organisms. The model also assumes that hosts and parasites both reproduce


sexually.



Red Queen hypothesis


?



The phrase


Looking Glass (Carroll 1872). In Alice's dream about the looking glass house,


she first finds that things appear left-to-right, as if shown in a mirror. She then


finds that chess pieces are alive. She will later encounter several of these pieces


(most notably the Red Queen), after she leaves the looking glass house to see


the garden.



?



Alice decides that it would be easier to see the garden if she first climbs the hill,


to which there appears to be a very straight path. However, as she follows the


path, she finds that it leads her back to the house. When she tries to speed up,


she not only returns to the house, she crashes into it. Hence, forward


movement takes Alice back to her starting point (Red Queen dynamics), and


rapid movement causes abrupt stops (extinction).


Eventually, Alice finds herself in a patch of very vocal and opinionated flowers;


the rose is especially vocal. The flowers tell Alice that someone like her (the Red


Queen) often passes through, and Alice decides to seek this person, mostly as


a way to escape more verbal abuse.



?



When Alice spots the Red Queen, she begins moving toward her. But, the Red


Queen quickly disappears from sight. Alice decides to follow the advice of the


rose, and go the other way (


Immediately she comes face-to-face with the Red Queen (see Lythgoe and


Read 1998).





?



The Red Queen then leads Alice directly to the top of the hill. Along the way, the Red


Queen explains that hills can become valleys, which confuses Alice. Already, in this


world, straight can become curvy, and progress can be made only by going the opposite


direction; now, according to the Red Queen, hills can become valleys and valleys can


become hills.


At the top of the hill, the Red Queen begins to run, faster and faster. Alice runs after the


Red Queen, but is further perplexed to find that neither one seems to be moving. When


they stop running, they are in exactly the same place. Alice remarks on this, to which


the Red Queen responds:


keep in the same place


required to stay in the same place. Cessation of change may result in extinction.



2


猎物



捕食者的简单模型




第三节



捕食模型





一、



Lotka- Volterra


的捕食模型



?



该模型是描述两个世代相重叠的不 同种群共存,假定没有其他限制因子,仅仅


由于捕食和被捕食的相互影响,导致种群密度 产生相应的变化。



?



被捕食者种群:假如没有捕食者种群存在,被捕食者种群将以指数式增长:





































式中,


N


为被捕食者密度,


r1


为被捕食者在没 有捕食者时的瞬时增长率。











但如果有捕食者种群共存,


被捕食者种群的增长模型就应加入被捕


食的影响因素:









其中< /p>


P


为捕食者种群的密度,


ε


为捕食压力。



ε



0


时,


即没有


捕 食压力,增长模型就回到指数式增长方程;


ε


越大,表示捕食压


力越大,被捕食者种群的密度就越低。





?



捕食者种群:假如没有被捕食者种群存在,捕食者种群密度将呈几


何 级数减少,数学表达式为:





?



式中


p< /p>


为捕食者种群密度,


r2


为捕食者种群在 没有被捕食者时的瞬时


死亡率。




?



但如果有被捕食者种群共存,捕食 者种群的密度就会随被捕食者种


群密度的改变而改变,上述方程就应改写为:

< p>



-


-


-


-


-


-


-


-



本文更新与2021-02-27 17:32,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/674949.html

海洋生物群落中的种间关系的相关文章