关键词不能为空

当前您在: 主页 > 英语 >

(译文)换热器英文参考文献

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-01-30 10:17
tags:

-

2021年1月30日发(作者:英语电子词典)


应用计算数值的方法来研究流体的粘度变化


对板式换热器性能的影响



M.A. Mehrabian and M. Khoramabadi


Department of Mechanical Engineering, Shahid Bahonar University of Kerman,



Kerman, Iran






目的


--


本文的目的是在逆流和稳态条件下 ,


通过数值计算,


研究流体粘度的


变化 对板式换热器热特性的影响。



设计


/


工艺


/


方法


- -


实现这篇文章目的的方法,源于由


4


部分组成的热量交


换板中间通道中冷热流体的一维能量平衡方程。有限差分法已经用于计 算温度分


布及换热器的热性能。在侧边通道中,水作为将被冷却的热流体,然而在中央通


道中,大量随温度变化同时粘度随之变化剧烈的流体作为将要被加热的冷流体。



发现—这个程序的运行实现了工作流体的结合,例如水与水,水与异辛 烷,水与


苯,水与甘油和水与汽油等。对于以上所有工作流体的结合,两种流体的温度分


布已经沿流动通道划分。总传热系数可以通过冷流体和热流体的温度来绘制。研


究发现,若总传热系数呈线性变化,在温度变化范围内既不是冷流体和热流体的

< br>温度。当粘度已受温度影响或者冷流体的性质改变时,换热器的影响效果并不是


很 显著。



创意


/


价值


--


对于由


2

< br>块板为边界的温度控制体来说,


本文包含一个可以得


到能 量平衡方程数值解的新方法。通过对数值计算结果与实验结果进行比较,验


证了这种数值 计算方法。




1

< br>关键词


:


热交换器、热传递、数值分析、有限差分法



研究类型


:


研究 性论文。























2






A


:


板传热面积,


m


2



b


:< /p>


板间距,


m



C


:


等式常数



C


:


热容,


W /


?


C



C< /p>


p


:


定压比热容,


J


/


kg


?


?


C



D


e< /p>


:


当量直径,


m



h


:


对流传热系数,

< br>W


/


m


2


?


?


C


j


:


指定轴截面



k


:


板传导率,


W


/

< br>m


?


?


C



L


:


板长度,

m



m


:


粘度修正系数



?


m

< br>:


质量流量,


kg


/

< p>
s



n


:


NuP


?


1


r


3



R


e

之间的斜率



NTU:


传热单元数



Nu:


努塞尔数



Pr:


普朗特数



Q:


传热速率


, W


Re:


雷诺数



3




r:


方程指数


(8)


t:


时间


, s


T:


温度


,




u:


流速


, m/s


U


:总传热系数,


W


/


m


2


?


?


C



?


U


:


平均传热系数,


W


/


m


2


?


?


C



V


:


通道体积,


m


3



w:


流动宽度


, m


x:


横向坐标



y:


轴向坐标


m


:


流体动粘度系数,


kg


/


m


?


s

< p>
r


:


流体密度,


kg


/


m


3



l:


换热器有效性



d:


板厚度


, m


f:


板投影面积的比值



4













c :


冷流体



Cv:


控制体



h :


热流体



m :


平均值



min:


最小值



w :


板壁



5





















板式换热器在不同产业发展进程中的贡献日益增加。它被认为是工程应用换

< br>热器中首要选择,因为它们的优点和显著的特质,例如结构紧凑(占用空间小),


良好的热性能,能从一个较小温度差恢复热量,灵活性较强,事故风险低,人工


清洗方便 ,维修保养费用较低。



在满足严格的卫生标准和精确的温度控制


(Dunkley et al., 1961)


条件下,


板式换热器在牛奶、药品 及液态食品加工工程中证实了它们的优势要超过管壳式


换热器。板式换热器也适用于橡胶 和造纸工业


(Reppich, 1999)


。在加热和冷却系


统中,板式换热器应用于蒸发器和冷凝器


(Mazza, 1984).


热流体和冷流体温差随着换热器的长度而变化,使得传热率的计算变得复 杂。


在大气压下,


Haseler


等(


1992


年)


,用一个有三个通道单向 流的板式换热器进行


了沿


V


型区域的温 度测量。在中央通道,水和


R113


作为冷流体。在中央通道的 五


个测量点进行了温度的测量。准确的温度估算偏差不超过


0. 2K


。对于板式换热器


的设计和模拟,这些数据常被用来验证< /p>


HTFS


计算机程序


APLE

< p>



在逆流和并流的流动过程中,如果总传热系数 为常数,对数平均差可以作为


冷热流体的真实温度差。然而,传热系数取决于流体的热性 能,因此随温度而变


化。


Colburn (1933)


和许多研究者通过液


-


液热交换器液的实验, 已经证实了总传


热系数是温度的函数,并且随换热器长度而变化。因此,假定总传热系数 是不真


实的,流体的物理性能随温度变化剧烈。对于这样的流体,对数平均温差并不代< /p>


表冷流体和热流体的真实温差。


Foote (1967)


,在特殊流体流程中,通过研究通


过校正系数来修正对数平均温差。这 些修正系数只适用于无限数目换热板的换热



6


器和一些有限数目换热板的换热器。



一些不同


的来解决


多变的


总传热


系数方


法已经在


经典的


研究传


热类文献


(Kern, 1950)


或近代的


(Schlunder, 1989)


中提出。


Mehrabian (2003)


延伸了一种


analytical-numeri cal


的方


法来研


究出板


式换热


器内的


流体轴


向温< /p>


度变化。


Uniformheat


通量、


不变的总传热系数、


U



T


之间的线性关系,


U


和< /p>


DT


之间的线


性关系,可使系统微分方程 组合,在冷热流体流动通道中建立能量平衡方程的四


种特殊情况。



除非一个简单的关系,例如在


(Mehrabian, 2 003)


中提到的总传热系数和温度


变化的存在关系,如果在数 值分析(有限分差法、有限单元、有限体积)的基础


上,总传热系数和板式换热器通道中 的流体温度分布就可以确定。通过这种方法,


换热器的通道分为多个足够小的轴向部分, 这样温度可以假定在每个部分是恒定


的,但是每一部分之间是有变化的。一个有限差电脑 程序可以确定总传热系数和


在每个轴向部分冷热流体的温度。显而易见,结果的准确性取 决于轴向分开的数


量。



本文的目的是 探讨粘度的变化如何影响板式换热器的总传热系数、温度分布


和换热器的热性能。从实验 中获得的数字结果已得到应用,此流板尺寸和流动细


节纳入


(H aseler


高庆宇


,1992



)


,后来又编入计算机程序之中。数字预算的结果

< br>与实验结果吻合。







7


数学模型



板式换热器数值分析法用到 了对流结构和


U


型结构中。四个


APV SR3


标准的


板形成三个流动通道。两侧的通道有向下流的热流 体,然而中间通道有向上流动


的冷流体。换热器的中间通道的


V


型区域被分为五个轴向部分,这样流体从一个


轴向部分进入下一 个部分。进口和出口处是在板的左下角和右上角。可是相对中


间通道而言,两侧通道进口 和出口处是与之相反的。应该指出的,在换热器的不


同区域,三角形分布器的存在会使热 交换部位每一单元长度都是有区别的。然而


这种区别在本文并不值得推崇,因为这些节点 是在主要的


V


型部位,这样轴向分


段被 假设是均等的。板的几何体和流程在


(Haseler


高庆宇< /p>


,1992



)


中用于局部温


度测量实验。这使两种数据的对比更加有意义。



数学模型基于以下假设条件可通过能量平衡方程建立:





















轴向流传导在流动通道和板上表现不显著


;


换热器的尾部板是绝缘的


;


稳态条件


;


热流体均匀分布在两侧边通道


;


忽略热损失


;


没有相变(沸腾和冷凝)


;


除了粘度,其他物理性质不变


;


一维流动


;


通过子通道的温度变化忽略不计。




假设在每条通道的垂直方向,一维流动的流体会保持一个平均速度运动。假



8


设均匀分布的流体在冷热流体通道的流速是恒 定的。基于以上的假设,图


1


控制


体的 能量方程是:




采用稳态假定条件, 方程(


1


)可简化为:

















th


在侧 边通道与之相同,由于这个原因,方程(


2


)可变为:




对称的几何形状和流动使控制体( 如图


1


)从两侧的通道均等的吸收能量,并且

< br>


无论是左手边的通道还是右手边的通道,一个相似的控制体只从一边的通道来吸


收能量。其中一边通道的控制体的能量平衡方程是:






将方程 (


3


)和(


4


)组成方程组,通过方程组来控制换热器相邻通道流体的温度


分布。对

< br>U


很大变化的解析解,除了如


(Mehrabian, 2003)


等一些特殊情况下,会


变得非常复杂并且不切合实际 。




9




1


热控制体



10






































数值分析



数值分析法中使换热器分成 一些轴向的部分。一个典型的轴向部分都有一个


表面积


。对于这 个增加的表面积,冷热流体的温度分别是



,我们





< br>总

























< br>


等式


2


可以应用在轴截面上, 表示为:




等式(

< br>3


)和(


4


)也可以运用在换热 器相邻通道的两个轴截面上,



可写为:




上述方程的解的获得是当空间导数存在偏差时。以


viscosities(Yaws,


2003)


为依据的温度数据表被编入计算机程序中,并且这个 程序可以表示出每个轴截面


上,流体流动时的温度下的黏度。线性插值的操作就开始进行 ,此时温度数值与


表值不一致。像密度、热导率等一些其他的流体性质与温度无关。每种 流体的这


些特性的数值以平均流体温度来指定,并且作为输入数据。冷热流体的入口温度


作为数值分析的边界条件。



板式换热 器通道中的流体无量纲传热系数可看成是与热传递相关的一种类型



11


(Rao et al., 2002)





Shah and Focke (1988)


进行了实验研究 板式换热器热传递和压降特性。他们注意


到,常数


C

< p>
取决于换热板的类型和换热器的几何形状,而常数


n


取决于流体的流


态。



Edwards et al. (1974)


研究证明得出, 在雷诺数大约小于


10


时,实验数据


是 以


标绘的,而不是


APV Junior Paraflow


板落在表明典型传热关系


的坡度线


1/ 3


处的


Re


值:




在雷诺数较高时(


Re


大于


10



,坡度约为


0.7


,这样会得出过度条件和湍流


条 件:




这种关系也可能成为相互距离


b


的两个平行板之间的湍流类型。可假设为,由于


板的褶皱,


取决于当量直径


的雷诺数会影响热传递的 增加。


对于牛顿


流体,


Edwards


et


al


得到的结果,表明


APV


Junior


Paraflow


板被 作为流动通道,


并可以推广到任何板的类型,提供常数


C


来作为修正值。



Mehrabian(19 96



)


进行了广泛的研究,


从实验和理论观点探究流体动力学和


板式换热器的热性能。在湍流(


Re


大于


10


)条 件下,他对


APV SR3


板提出了以下


的关系:




等式



9< /p>



同时适用于板式换热器冷热流体通道,


传热系数分别为


截面


j


的总传热系数是 :




12



h





正如


Edwards et al


所提 出的,在雷诺数低至


10


的情况,板式换热器流动通

< p>
道中的流体也可能形成湍流。因此,湍流假设分析是合理的,并且等式(


9


)适用


于水为介质的热流体,同时甘油、苯和辛烷可作为冷流体 。这些冷流一定要选择


其粘度随温度而变化。




















13


结果和讨论



为了得到独立网格数据结 果,程序运行时将轴向分为几个不同的部分。将确


定的网格点的数值结果与相应的


(Haseler et al., 1992)


的实验结果进行对比 ,


然后记录两者之间的差值。值得注意的是,增加网格点的数量会减少差值。然而,


当轴向部分的数目是


17


的时候,此时可产 生最小差值,当超过


17


时,差值减小


并不明显。通过实验结果表明,轴向部分的数目为


17


。而


3



6,9,15


这些数字都



3


的倍数。这是在


(Haseler et al., 1992).


中对比相应点处实验结果的目的。



应该被提及的是,在获得数值解之初,两种流体的出口温度并不清楚,可通


过 两者的进口平均温度来估算。当得到出口温度时,每种流体的性质可以由其本


身的平均温 度来估算。


(Khoramabadi, 2004).


换热 板尺寸和和流体流动条件的数值分析列于表


1.


这些数值都是< /p>


(Haseler


et


al., 1 992)


中用于试验温度测量的所需尺寸和条件。水的典型温度实验的温度列

< p>
于表


II



以当量直径< /p>


的热流体和冷流体的雷诺数分别是


879



304



换热器中间通道的局部温度 的数据结果然后与


V


型区域的实验温度相比较,列于

< p>


II


并得到数值上的一致。

这种误差在


范围内,


这样才表明


这 种数值法的准确性。由于数值计算程序已经被验证,进口冷热流体之间的变大


的温度差会 使流体粘度显著影响温度分布、总传热系数和换热器的传热性能。冷


流体和热流体的进口 温度分别是


这个程序适用于水


-


水、水


-


苯、水


-


异 辛烷四种类型的流体。冷热流体的沿换热器温度分布如图


2


和< /p>


3


。水


-


苯与水


-


苯的温度分布相似,因此,并没有在图


2



3


中。对于每种类型的工作流体 ,恒


定和变化的流体粘度的温度分布都有所体现。可以注意到,水之间的温度分布的



14

-


-


-


-


-


-


-


-



本文更新与2021-01-30 10:17,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/590797.html

(译文)换热器英文参考文献的相关文章