关键词不能为空

当前您在: 主页 > 数学 >

高中数学选修2-1知识点

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-15 07:22
tags:高中数学知识点

高中数学必修的知识点-高中数学三视图试题及答案




高二数学选修2-1
第一章:命题与逻辑结构
知识点:
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.假命题:判断为假的语句.
2、“若
p
,则q
”形式的命题中的
p
称为命题的条件,
q
称为命题的结论.
3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个
命题 称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.
若原命题为“若
p< br>,则
q
”,它的逆命题为“若
q
,则
p
”.
4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否
定,则这两 个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.
若原命题为“若
p
,则
q
”,则它的否命题为“若
?p
,则
?q
” .
5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否
定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否
命题。 若原命题为“若
p
,则
q
”,则它的否命题为“若
?q
,则
?p
”。
6、四种命题的真假性:
原命题 逆命题
真 真
真 假
假 真
假 假

四种命题的真假性之间的关系:

否命题




逆否命题




?
1
?
两个命题互为逆否命题,它们有相同的真假性;
?
2
?
两个命题为互逆命题或互否命题,它们的真假性没有关系.
7、若
p?q
,则
p

q
的充分条件,
q

p
的必要条件.

p?q
,则
p

q
的充要条件(充分必要条件).
8、用联结词“且”把命题
p
和命题
q
联结起来,得到一个新命题,记作
p?q


p
、当
p

q
都是真命题时,
p?q
是真命题;
q
两个命题中有一个命题是假命题时,
p?q
是假命题.
用联结词“或”把命题p
和命题
q
联结起来,得到一个新命题,记作
p?q


p

q
两个命题中有一个命题是真命题时,
p?q
是真 命题;当
p

q
两个命题都是假
命题时,
p?q
是 假命题.
对一个命题
p
全盘否定,得到一个新命题,记作
?p


p
是真命题,则
?p
必是假命题;若
p
是假命题 ,则
?p
必是真命题.
9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“
?
”表示.




含有全称量词的命题称为全称命题.
全称命 题“对
?
中任意一个
x
,有
p
?
x
?成立”,记作“
?x??

p
?
x
?
”.
短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“
?
”表示.
含有存在量词的命题称为特称命题.
特称命题“存在
?
中的一个
x
,使
p
?
x
?
成立”,记作“
?x??

p
?
x
?
”.
10、全称命题
p
?x??

p
?
x
?
,它的否定
?p

?x??

?p
?
x
?
。全称命题的否定
是特称命题。
特称命题
p

?x??

p
?< br>x
?
,它的否定
?p

?x??

?p?
x
?
。特称命题的否定是全
称命题。

考点:
1、充要条件的判定
2、命题之间的关系
典型例题:
★1.下面四个条件中,使
a?b
成立的充分而不必要的条件是


A.
a?b?1

C.
a
2
?b
2



n
B.
a?b?1

D.
a
3
?b
3


★2.已知命题P:
?
n∈N,2>1000,则
?
P为
nn
A.
?
n∈N,2
≤1000 B.
?
n∈N,2
>1000
C.
?
n∈N,2
≤1000
n
D.
?
n∈N,2
<1000
n
★3.
x?1是|x|?1

A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
第二章:圆锥曲线
知识点:
11、求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化
①建立适当的直角坐标系 ;②设动点
M
?
x,y
?
及其他的点;③找出满足限制条件的等式;
④将点的坐标代入等式;⑤化简方程,并验证(查漏除杂)。

12、平面内与两个 定点
F
1

F
2
的距离之和等于常数(大于
F1
F
2
)的点的轨迹称为椭圆。
这两个定点称为椭圆的焦点,两焦点的距 离称为椭圆的焦距。
MF
1
?MF
2
?2a
?
2a ?2c
?
















13、椭圆的几何性质:
焦点的位置 焦点在
x
轴上
焦点在
y
轴上
图形

x
a
2
2

y
a
2
2
标准方程
?
y
b
2< br>2
?1
?
a?b?0
?

?
x
b< br>2
2
?1
?
a?b?0
?

范围
?a?x?a

?b?y?b

?b?x?b

?a?y?a

?
1
?
? a,0
?

?
2
?
a,0
?

?
1
?
0,?a
?

?
2
?
0,a
?

?
1
?
?b,0
?

?2
?
b,0
?

顶点
?
1
?
0,?b
?

?
2
?
0,b
?

轴长
焦点
焦距
对称性
离心率
短轴的长
?2b
长轴的长
?2a

F
1< br>?
?c,0
?

F
2
?
c,0
?< br>
F
1
F
2
?2c
?
c?a?b
2 22
F
1
?
0,?c
?

F
2
?
0,c
?

?
,a最大
关于
x
轴、
y
轴对称,关于原点中心对称
e?
c
a
?1?
b
a
2
2
?
0?e?1
?

a
2
准线方程
x??
a
2
c

y??
c

14 、设
?
是椭圆上任一点,点
?

F
1
对应准线的距 离为
d
1
,点
?

F
2
对应准线的距离< br>为
d
2
,则
?F
1
d
1
?
?F
2
d
2
?e

15、平面内与两个定点
F< br>1

F
2
的距离之差的绝对值等于常数(小于
F
1< br>F
2
)的点的轨迹
称为双曲线。这两个定点称为双曲线的焦点,两焦点的距离称 为双曲线的焦距。
MF
1
?MF
2
?2a
?
2a ?2c
?

16、双曲线的几何性质:
焦点的位置 焦点在
x
轴上
焦点在
y
轴上




图形

标准方程
x
a
2
2

y
a
2
2
?
y
b
2
2
? 1
?
a?0,b?0
?

?
x
b
2
2
?1
?
a?0,b?0
?

范围
顶点
轴长
焦点
焦距
对称性
离心率
x??a

x?a

y?R

y??a

y?a

x?R

?
1
?
?a,0
?

?
2
?
a,0
?

?
1
?
0,?a
?

?
2
?
0,a
?

虚轴的长
?2b
实轴的长
?2a

F
1
?
?c,0
?
、< br>F
2
?
c,0
?

F
1
F
2
?2c
?
c?a?b
222
F
1
?
0, ?c
?

F
2
?
0,c
?

?
,c最大
关于
x
轴、
y
轴对称,关于原点中心对称
e?
c
a
?1?
b
a
2
2
?
e?1
?< br>
a
2
准线方程
x??
a
2
c
b
a

y??
c
a
b

渐近线方程
y??x

y??x

17、实轴和虚轴等长的双曲线称为等轴双曲线。
18、设?
是双曲线上任一点,点
?

F
1
对应准线的距离为< br>d
1
,点
?

F
2
对应准线的距
离 为
d
2
,则

18、平面内与一个定点
F
和一条定 直线
l
的距离相等的点的轨迹称为抛物线.定点
F
称为
抛物线的焦点 ,定直线
l
称为抛物线的准线.
19、过抛物线的焦点作垂直于对称轴且交抛物线于
?

?
两点的线段
??
,称为抛物线的
“通径”, 即
???2p


20、焦半径公式:
?
?
x
0
,y
0
?
y?2px
?
p?0
?
2
?F
1
d
1
?
?F
2
d
2< br>?e

若点

在抛物线上,焦点为
F
,则
?F?x
0
?
p
2




若点
?
?
x
0
,y
0
?
在抛物线
y??2px
?
p?0
?
2
上,焦点为
F
,则< br>?F??x
0
?
p
2

若点
?
?
x
0
,y
0
?
在抛物线
x?2py
?p?0
?
2
上,焦点为
F
,则
?F?y
0?
p
2

p
2
. 若点
?
?
x
0
,y
0
?
在抛物线
x??2py
?
p?0
?
2
上,焦点为
F
,则
?F??y
0
?


21、抛物线的几何性质:
y
2
?2px
2
?2px
标准方程

y?
?
p?0
?

?
p?0
?

图形


顶点
?
0,0
?

对称轴
x

焦点
F
?
p
?
,0
?
?
F
?
?
p
,0
?
2?

?
?
?
2
?
?
准线方程
x??
p
2
x?
p

2

离心率
e?1

范围
x?0

x?0




考点:
1、圆锥曲线方程的求解
2、直线与圆锥曲线综合性问题
3、圆锥曲线的离心率问题
典型例题:

x
2
?2py

?
p?0
?


y

F
?
p
?
0,
?
?
2
?
?

y??
p
2

y?0

x
2
??2py
?
p?0
?


F
?
p
?
0,?
?
?
2
?
?y?
p
2

y?0





★★1.设双曲线的左准线与两条渐近线交于
A,B
两点,左焦点在以
AB
为直径的圆内,
则该双曲线的离心率的取值范围为
A.
(0,2)
B.
(1,2)
C.
(
2
2
,1)
D.
(2

??)

★★★2.设椭圆
x
a
2
2
?
y
b
2
2
?1(a?b?0)
的 左、右焦点分别为F
1
,F
2
。点
P(a,b)
满足
|PF
2
|?|F
1
F
2
|.
(Ⅰ)求椭圆的离心率
e

(Ⅱ)设直线PF
2
与椭圆相交 于A,B两点,若直线PF
2
与圆
(x?1)
2
?(y?
交 于M,N两点,且
|MN|?
5
8
|AB|
,求椭圆的方程。
3)?16

2
第三章:空间向量
知识点:
1、空间向量的概念:
?
1
?
在空间,具有大小和方向的量称为空间向量.
?
2
?
向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示
向量的方向.
????
????
,记作
??

?3
?
向量
??
的大小称为向量的模(或长度)
?
4?
模(或长度)为
0
的向量称为零向量;模为
1
的向量称为单位 向量.
?
5
?
与向量
a
长度相等且方向相反的向量称为< br>a
的相反向量,记作
?a

?
6
?
方向相同且模相等的向量称为相等向量.
2、空间向量的加法和减法:
它遵循平行
?
1
?
求两个向 量和的运算称为向量的加法,
四边形法则.即:在空间以同一点
?
为起点的两个已?
?
知向量
a

b
为邻边作平行四边形
??C ?
,则以
?

????
?
?
点的对角线
? C
就是
a

b
的和,这种求向量和的方
??
?法,称为向量加法的平行四边形法则.
?
2
?
求两个向量差的运算称为 向量的减法,它遵循三角
?????
?
?
???
形法则.即:在空间 任取一点
?
,作
???a

???b




????
?
?

???a?b

3、实数?与空 间向量
a
的乘积
?
a
是一个向量,称为向量的数乘运算.当
?
?0
时,
?
a

?
?????
a
方向相同;当
?
?0
时,
?
a

a
方向 相反;当
?
?0
时,
?
a
为零向量,记为
0

?
a

长度是
a
的长度的
?
倍. < br>?
?
4、设
?

?
为实数,
a
,< br>b
是空间任意两个向量,则数乘运算满足分配律及结合律.
?
??
?
?
?
分配律:
?
a?b?
?
a?
?
b
;结合律:
?
?
?
a
?
?
?
??
?
a

?
???
??
5、如果表示空间的有 向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行
向量,并规定零向量与任何向量都共 线.
??
?
?
?
a
6、向量共线的充要条件:对于空间任 意两个向量,
bb?0

ab
的充要条件是存在
??
??
实数
?
,使
a?
?
b

7、平行于同一个平面的向量称为共面向量.
8、向量共面定理:空间一点
?
位于平面
??C
内的充要条件是存在有序实数对
x

y
, 使
????????????????????????????
或对空间任一定点
?
,有
?????????
或若四点
?

?

???x???y?C

x?yC

????????????????< br>?

C
共面,则
???x???y???z?C
?
x ?y?z?1
?

????????
??
?
?
9 、已知两个非零向量
a

b
,在空间任取一点
?
,作
???a

???b
,则
????
称为
?
??
?
?
?
向量
a

b
的夹角,记作< br>?a,b?
.两个向量夹角的取值范围是:
?a,b??
?
0,
?
?

???
??
?
?
?
?
10、对于两个非零向量
a

b
,若
?a,b??
,则向量
a

b
互相垂直,记作
a?b

2
??
??
?
?
?
?
?
?
11、已知两个非零向 量
a

b
,则
abcos?a,b?
称为
a

b
的数量积,记作
a?b
.即
?
?
?
?
?
?
a?b?abcos?a,b?
.零向量与任何向量的数量积为
0

?
?
?
??
?
?
?
?< br>aa
bcos?a,b?
的乘积.
a
12、
a?b
等于的长度与
b
在的方向上的投影
?
???????
??
a
13若,
b
为非零向量,
e
为单位向量,则有
?
1
?
e?a?a?e?acos?a,e?

?
?
?
?
?
?
?
?
?
aba与b同向
??
?< br>?
???
2

a?a?a

a?
?
2
?
a?b?a?b?0;
?
3
?
a?b?
??
?
?
?
?
?aba与b反向
?
??
??
??
a?a




??
?
?
?
?
?
a?b
?
?
4
?
cos?a,b??
?
?

?
5
?a?b?ab

ab
?
?
??
?
?
?
?
?
?
14量数乘积的运算律:
?
1
?
a?b?b?a

?
2
?
?
?
a
?
?b?
?
a?b?a?
?
b

????
?3
?
?
?
?
???
?
?
a?b?c? a?c?b?c

?
?
??
?
15、空间向量基本定理: 若三个向量
a

b

c
不共面,则对空间任一向量
p
,存在实数
?
???

?
x,y,z
?
,使得
p?xa?yb?zc

?
??
16、三个向量
a

b

c
不共面,则所有空间向量组成的集合是
?
?
?
?
????
??
a
pp?xa?yb?zc,x,y ,z?R
.这个集合可看作是由向量,
b

c
生成的,
?
?
??
?
?
?
a,b,c
称为空间的一个基底,< br>a

b

c
称为基向量.空间任意三个不共面的向量都可以< br>?
构成空间的一个基底.
??
?????
17、设
e
1

e
2

e
3
为有公共起点
?
的三个两两垂直的单位向量(称它们为单位正交基底),
??
??
??
?? ??????

e
1

e
2

e
3
的公共起点
?
为原点,分别以
e
1

e
2

e
3
的方向为
x
轴,
y
轴,
z
轴的正
方向建立空间直角坐标系
?xyz
.则对于空间任意一个向量
p
,一定可以把它平移,使它的
????
?
起点与原点
?
重合,得到向量
???p
.存在有序实数组
?
?
x,y,z
?
,使得
?????
?
p?x
1
e?y
2
e?
??
???????
?
.把
ze
x

y

z
称作向量
p
在单位正交基底
e
1

e
2

e
3
下的坐标,记
3
?
?

p?
?
x,y,z
?
.此时,向量
p
的 坐标是点
?
在空间直角坐标系
?xyz
中的坐标
?
x,y, z
?

?
?
?
?
18、设
a?
?
x
1
,y
1
,z
1
?

b?< br>?
x
2
,y
2
,z
2
?
,则
?
1
?
a?b?
?
x
1
?x
2
,y
1
?y
2
,z
1
?z
2
?

?
?
?
2
?
a?b?
?
x
1?x
2
,y
1
?y
2
,z
1
?z2
?

?
3
?
?
a?
?
?
x
1
,
?
y
1
,
?
z
1
?

?
?
?
4
?
a?b?x
1
x
2
?y
1
y
2
?z
1
z2

?
?
?
??
?
?
5
?

a

b
为非零向量,则
a?b?a?b?0?x
1
x
2
?y
1
y
2
?z
1
z2
?0

?
?
?
?
?
?
?
6
?

b?0
,则
ab?a?
?
b?x< br>1
?
?
x
2
,y
1
?
?
y
2
,z
1
?
?
z
2

?
?
7
?

?
a?
??
a?a? x
1
?y
1
?z
1

222




?
?
?
a?b
?
?
8
?
cos?a,b??
?
?
?
ab
x
1
x
2
?y
1
y
2
?z
1
z
2
x?y?z?
2
1
2
1
2
1

2
2
2
2
x?y?z
2
2
?
9
?

d
??
?
?
x
1,y
1
,z
1
?

??
?
x
2
,y
2
,z
2
?

????
????< br>?
x
2
?x
1
?
2
?y
?
2
?y
1
?
2
?z
?
2
z?
1< br>2
?

????
19、在空间中,取一定点
?
作为 基点,那么空间中任意一点
?
的位置可以用向量
??
来表
????< br>示.向量
??
称为点
?
的位置向量.
20、空间中任意一条 直线
l
的位置可以由
l
上一个定点
?
以及一个定方向确定. 点
?
是直线
????
?
?
l
上一点,向量
a
表示直线
l
的方向向量,则对于直线
l
上的任意一点
?< br>,有
???ta
,这样

?
和向量
a
不仅可 以确定直线
l
的位置,还可以具体表示出直线
l
上的任意一点.
2 1、空间中平面
?
的位置可以由
?
内的两条相交直线来确定.设这两条相交直 线相交于点
?
?
?
,它们的方向向量分别为
a

b

?
为平面
?
上任意一点,存在有序实数对
?
x, y
?
,使
?
????
?
?
?

? ??xa?yb
,这样点
?
与向量
a

b
就确定了 平面
?
的位置.
?
22、直线
l
垂直
?
,取直线
l
的方向向量
a
,则向量
a
称为平面
?< br>的法向量.
?
?
?
?
ba
23、若空间不重合两条 直线
a
,的方向向量分别为,
b
,则
ab?ab?

?
?
??
?
?
a?
?
b
?
?< br>?R
?

a?b?a?b?a?b?0

??
24 、若直线
a
的方向向量为
a
,平面
?
的法向量为
n
,且
a?
?
,则
a
?
?a
?
< br>?????????
?a?n?a?n?0

a?
?
?a?< br>?
?an?a?
?
n

?
?
?
?
a
b
?
25、若空间不重合的两个平面,
?
的法向量分别为 ,,则
?

?
?ab?

?
?
?
? ?
?
a?
?
b

?
?
?
?a?b ?a?b?0

?
?
26、设异面直线
a

b< br>的夹角为
?
,方向向量为
a

b
,其夹角为
?
,则有
?
?
a?b
cos
?
?cos
?
?
?
?

ab
???
??
??
27、设直线
l
的方向向量为
l
,平面
?
的法向量为n

l

?
所成的角为
?

l

n
的夹角
?
?
l?n

?
,则有sin
?
?cos
?
?
?
?

ln
??????????
28、设
n
1

n
2
是二面角
?
?l?
?
的两个面
?

?
的 法向量,则向量
n
1

n
2
的夹角(或其
???? ?
n
1
?n
2
补角)就是二面角的平面角的大小.若二面角
?
?l?
?
的平面角为
?
,则
cos
?
?
????

?

n
1
n
2




????
????
29、点
?
与点
?
之间的距离可以转化为两点对应向量
??
的模
??
计 算.
30、在直线
l
上找一点
?
,过定点
?
且垂 直于直线
l
的向量为
n
,则定点
?
到直线
l
的距离
????
?
???n
????????
?

d???cos???,n??

?
n
?
31、点
?< br>是平面
?
外一点,
?
是平面
?
内的一定点,
n
为平面
?
的一个法向量,则点
?

????
?< br>???n
????????
?
平面
?
的距离为
d?? ?cos???,n??

?
n
?
考点:
1、利用空间向量证明线线平行、线线垂直
2、利用空间向量证明线面平行、线面垂直、面面平行、面面垂直
3、利用空间向量证明线线角、线面角、面面角问题
典型例题:
★★1.已知正方体ABC D—A
1
B
1
C
1
D
1
中,E为C
1
D
1
的中点,则异面直线AE与BC所成角
的余弦值为

★★★2.在如图所示的几何体中,四边形ABCD为平行四边形,
∠ ACB=
90?
,EA⊥平面ABCD,EF∥AB,FG∥BC,EG
∥AC.AB=2EF.
(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;
(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.
★★★3.如图,在五棱锥P —ABCDE中,
PA?
平面ABCDE,
ABCD,ACED,AEBC,
?ABC?45?,AB?22,BC?2AE?4
,三角形PAB
是等腰三角形。
(Ⅰ)求证:平面PCD
?
平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥P—ACDE的体积。


湖南高中数学模拟试卷-高中数学模拟课堂流程


符合高中数学的课文读物-高中数学函数部分题型


学高中数学报什么辅导班-投影高中数学北师大版


高中数学联赛 视频-2018年合肥高中数学一模


2016南昌高中数学竞赛-2017小卷练透高中数学


高中数学小结-人教版高中数学必修四试讲视频下载


高中数学经典题选豆瓣-高中数学河北用a


梧桐西院高中数学-如何精心设计高中数学教学活动



本文更新与2020-09-15 07:22,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/396130.html

高中数学选修2-1知识点的相关文章