-
% Statistics Toolbox
% betafit -
Beta parameter estimation.
% binofit -
Binomial parameter estimation.
%
dfittool - Distribution fitting tool.
%
evfit
?
Extreme value
parameter estimation.
% expfit -
Exponential parameter estimation.
%
gamfit - Gamma parameter estimation.
%
log nfit
?
Log no rmal
parameter estimati on.
% mle
?
Maximum likelihood
estimation (MLE).
% mlecov - Asymptotic
covarianee matrix of MLE.
% nbinfit -
Negative binomial parameter estimation.
% normfit
?
Normal parameter estimation.
% poissfit
- Poisson parameter estimation.
%
raylfit
?
Rayleigh parameter
estimation.
% unifit
?
Uniform parameter
estimation.
% wblfit
?
Weibull parameter
estimation.
%
% Probability
density functions (pdf).
% beta pdf -
Beta density
?
%
binopdf - Binomial density
?
% chi2pdf - Chi square
density
?
% evpdf
?
Extreme value density.
% exppdf - Exponential
density
?
% fpdf -
F density.
% gampdf - Gamma
density
?
% geopdf
- Geometric density
?
% hygepdf - Hypergeometric
density
?
% log
npdf - Log no rmal density.
% mvnpdf -
Multivariate normal density
?
% nbinpdf - Negative binomial density.
% n cf pdf - Non central F den sity
?
% nctpdf -
Noncentral t density
?
% ncx2pdf - Noncentral Chi-square
density.
% normpdf - Normal (Gaussian)
density.
% pdf - Density function for a
specified distribution.
% poisspdf -
Poisson density.
%
raylpdf ?
Rayleigh density.
% tpdf-T
density.
% unidpdf - Discrete uniform
density.
% unifpdf - Uniform
density
?
% wblpdf
- Weibull density.
%
%
Cumulative Distribution functions (cdf).
% betacdf - Beta cdf.
%
binocdf
?
Binomial cdf.
% cdf - Specified cumulative
distribution function.
% chi2cdf - Chi
square cdf.
% ecdf - Empirical cdf
(Kaplan-Meier estimate).
% evcdf -
Extreme value cumulative distribution function.
% expcdf - Exponential cdf.
% fcdf
?
F cdf.
% gamcdf - Gamma cdf.
%
geocdf - Geometric cdf.
% hygecdf -
Hypergeometric cdf.
% logncdf - Log no
rmal cdf.
% nbincdf
?
Negative binomial cdf.
% ncfcdf - Noncentral F cdf.
% nctcdf
?
Noncentral t cdf.
% ncx2cdf -
Noncentral Chi-square cdf.
% normcdf
?
Normal (Gaussian) cdf.
% poisscdf - Poisson cdf.
%
raylcdf - Rayleigh cdf.
% tcdf - T cdf.
% unidcdf
?
Discrete uniform cdf.
% unifcdf -
Uniform cdf.
% wblcdf
?
Weibull cdf.
%
% Critical Values of Distribution
functions.
% betai nv
?
Beta in verse cumulative
distributio n function.
% bino inv -
Binomial in verse cumulative distributio n
function.
% chi2i nv - Chi square in
verse cumulative distributio n fun ctio n.
% evinv
?
Extreme
value inverse cumulative distribution function.
% expi nv
?
Exp
on ential in verse cumulative distribution functi
on.
% finv - F in verse cumulative
distributi on function.
% garninv
?
Gamma inverse cumulative
distribution function.
% geoinv -
Geometric inverse cumulative distribution
function.
% hygeinv - Hypergeometric
inverse cumulative distribution function.
% icdf
?
Spec
Hied inverse cdf.
% logninv - Lognormal
in verse cumulative distribution fun ction.
% nbininv - Negative binomial inverse
distribution function.
% ncfinv
?
Noncen tral F in verse
cumulative distributi on function.
%
nctinv - Noncen tral t in verse cumulative
distributi on fun ctio n.
% ncx2inv
?
Noncentral Chi-square
inverse distribution function.
%
norminv
?
Normal (Gaussia n)
in verse cumulative distribution fun ction.
% poissi nv - Poiss on in verse
cumulative distributio n function.
%
rayli nv - Rayleigh in verse cumulative distributi
on function.
% tinv- T in verse
cumulative distributio n function.
% un
idinv - Discrete un iform in verse cumulative
distributi on function.
% unifinv -
Uniform in verse cumulative distributi on
function. % wblinv
?
Weibull in verse cumulative distributi
on function.
%
% Random
Number Generators
?
% betarnd - Beta random numbers.
% binornd - Binomial random
numbers
?
%
chi2rnd - Chi square random numbers.
%
evrnd - Extreme value random
numbers
?
% exprnd
?
Exponential random
numbers
?
% frnd -
F random numbers
?
% gamrnd - Gamma random
numbers
?
% geornd
- Geometric random numbers
?
% hygernd - Hypergeometric random
numbers
?
%
iwishrnd
?
Inverse Wishart
random matrix.
% lognr nd - Log no rmal
ran dom numbers.
% mvnrnd
?
Multivariate normal random
numbers
?
% mvtrnd
- Multivariate t random numbers.
%
nbinrnd - Negative binomial random
numbers
?
% ncfrnd
- Noncentral F random
numbers
?
% nctrnd
?
Noncentral t random
numbers.
% ncx2rnd
?
Noncentral Chi-square
random numbers
?
%
normrnd - Normal (Gaussian) random
numbers
?
%
poissrnd - Poisson random
numbers
?
% randg
?
Gamma random numbers (unit
scale).
% random - Random numbers from
specified distribution.
% randsample -
Random sample from finite population.
%
raylrnd
?
Rayleigh random
numbers
?
% trnd -
T random numbers
?
% unidrnd
?
Discrete urdform random numbers.
%
urdfrnd - Uniform random
numbers
?
% wblrnd
?
Weibull random numbers.
% wishrnd
?
Wishart random matrix
?
%
% Statistics.
%
betastat - Beta mean and variance.
%
binostat
?
Binomial mean and
variance
?
%
chi2stat - Chi square mean and varianee.
% evstat - Extreme value mean and
varianee.
% expstat - Exponential mean
and varianee.
% fstat - F mean and
variance
?
%
gamstat - Gamma mean and varianee.
%
geostat - Geometric mean and varianee.
% hygestat - Hypergeometric mean and
variance
?
%
lognstat
?
Lognormal mean
and varianee.
% nbinstat
?
Negative binomial mean and
varianee.
% n cfstat - Non central F
mea n and varia nee.
% nctstat -
Noncentral t mean and varianee.
%
ncx2stat - Noncentral Chi-square mean and
varianee.
% no rmstat - Normal (Gaussia
n) mea n and varia nee.
% poisstat -
Poisson mean and varianee.
% raylstat -
Rayleigh mean and varianee.
% tstat - T
mean and varianee.
% unidstat
?
Discrete uniform mean and
variance
?
%
unifstat - Uniform mean and varianee.
%
wblstat
?
Weibull mean and
variance
?
%
% Likelihood functions.
%
beta I ike
?
Negative beta
log-likelihood
?
% evlike - Negative extreme value log-
likelihood.
% exp I ike - Negative exp
on ential log-likelihood
?
% gamlike - Negative gamma log-
likelihood.
% log nlike - Negative log
normal log-likelihood
?
% nbinlike - Negative likelihood for
negative binomial distribution.
%
normlike
?
Negative normal
likelihood
?
%
wbllike - Negative Weibull log-likelihood.
%
% Descriptive Statistics.
% bootstrp
?
Bootstrap statistics for any function.
% corr
?
Lin ear
or rank correlati on coefficie nt.
%
corrcoef - Lin ear correlati on coefficie nt with
con fide nee intervals.
% cov -
Covariance.
% crosstab - Cross
tabulation.
% geomean
?
Geometric mean.
% grpstats - Summary statistics by
group.
% harmmean - Harmonic mean.
% iqr
?
In
terquartile range.
% kurtosis -
Kurtosis
?
% mad
?
Median Absolute Deviation.
% mean - Sample average (in MATLAB
toolbox).
% median - 50th percentile of
a sample.
% moment
?
Moments of a sample.
% nan max - Maximum ignoring NaNs
?
% nan mean
?
Mea n ign oring NaNs
?
% nan media n -
Median igno ring NaNs
?
% nanmin - Minimum ignoring NaNs.
% nanstd - Standard deviation ignoring
NaNs
?
% nan sum -
Sum ignoring NaNs.
% nanvar - Variance
ignoring NaNs.
% pretile - Percentiles.
% quantile
?
Quantiles
?
%
range - Range.
% skewness
?
Skewness.
% std
- Standard deviation (in MATLAB toolbox).
% tabulate - Frequency
table
?
% trimmean
- Trimmed mean.
% var
?
Variance (in MATLAB
toolbox).
%
% Linear Models.
% addedvarplot - Created added-variable
plot for stepwise regression.
% anoval
?
One-way analysis of
variance
?
%
anova2
?
Two-way analysis of
varianee.
% a nova n
?
n-way analysis of
variance
?
%
aoctool -1nteractive tool for analysis of
covariance.
% dummyvar - Dummy-variable
coding.
% friedman
?
Friedmarfs test
(nonparametric two-way anova).
% glmfit
- Generalized linear model fitting.
%
glmval
?
Evaluate fitted
values for generalized linear model.
%
kruskalwallis - Kruskal-Wallis test (nonparametric
one-way anova).
% leverage - Regression
diagnostic
?
%
Iscov
?
Least-squares
estimates with known covarianee
matrix
?
%
Isqnonneg - Non
?
negative
least-squares
?
%
manoval - One-way multivariate analysis of
varianee.
% manovacluster
?
Draw clusters of group
means for manoval.
% multcompare -
Multiple comparisons of means and other
estimates
?
%
polyc onf
?
Polyno mial
evaluati on and con fide nee interval estimatio n.
% polyfit
?
Least-squares polynomial fitting.
%
polyval - Predicted values for polynomial
functions.
% rcoplot - Residuals case
order plot.
% regress
?
Multivariate linear
regression.
% regstats - Regression
diag no sties.
% ridge - Ridge
regression.
% robustfit
?
Robust regression model
fitting.
% rstool - Multidimensional
response surface visualization (RSIVI).
% stepwise - Interactive tool for
stepwise regression.
% stepwisefit -
Non-interactive stepwise regression.
%
x2fx - Factor settings matrix (x) to design matrix
(fx).
%
% Nonlinear
Models
?
% nlinfit
- Nonlinear least-squares data fitting.
% nlin tool
?
Interactive graphical tool for prediction in non
linear models.
% n Ipredci - Con fide
nee intervals for predictio n.
-
-
-
-
-
-
-
-
-
上一篇:生成高斯分布的matlab程序
下一篇:matlab中的一些符号命令