关键词不能为空

当前您在: 主页 > 英语 >

信号与系统奥本海姆英文版课后答案

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-02-13 23:41
tags:

-

2021年2月13日发(作者:sambo)


Chapter 1 Answers



1.1



Converting from polar to Cartesian coordinates:



1


j


?


1


1


?


cos


?


?


?






e


2


2


2




1




2


e


?


j


?


j


?


1


1


?


cos(


?


?

< p>
)


?


?










2


2


e


e


j


?


2


?


cos(


)


?


j


sin(


)


?


j



?


?


2


2


5


?


j


2

< br>?


e


j


9


?


4


j


?


2


?


j



< /p>


?


1


?


j










?


cos(


)


?< /p>


j


sin(


)


?


?


j



2


2


?


j


?


?



4


2


e


?


2(cos(


)


?


j


sin(


))< /p>


?


1


?


j


e


?


2


?

< p>
?


4


4


2


e


?


2


e

j


?


4


2


e


?


9


?


j< /p>


4


?


2


e


?


?


j


4

< p>
?


1


?


j



2


e


j

?


?


4


?


1


?


j



?


2


1.2



converting from Cartesian to polar coordinates:



5


?


5


e


j


0


,


?


2


?


2


e


j

?


,


?


3< /p>


j


?


3


e


2


?


j


< p>
?


2


?


?


j


1


3


?

j


4


,


,


2


1


?


j


?


2


?


j


?


e


e


2


2


?


1


?

< br>j


?


?


2


e


1


?


j


3


?


j



?


?


j


(1


?


j


)


?


e

< p>
4


,


1


?


j


?


4



2


?


j


2


?


?


12



e


e


?


1

< p>
?


j


.


(a)


E


?


=







?


e


0


?


?


4


t


dt

< p>
?


?


1


,


P


?


=0, because


E


?


?


?

< p>


4


2


(b)


x


2


(


t

< p>
)


?


e


j


(2


t


?


4

< br>)


,


x


(

t


)


?


1


.Therefore,


E


?


=



P


?


=


lim


1


T


??


?


x


2


(


t

< p>
)


??


??


2

< p>
dt


=


?


2


??


??


dt


=

< p>
?


,



(


t


)


2


T

?


x


2


?


T


T


T


2


dt


?


lim


1


T


??


2


T


?< /p>


T


?


T


dt


?


?


T


??


??


lim1


?


1< /p>



2


??


(c)



x


(


t


)


=cos(t). Therefore,

< p>
E


2


2


T


T


??


?


T

< br>T


??


n


=

?


x


3


(


t


)


dt


=


?


??


??


cos(

t


)


dt


=


?


,



n


P


?


=


lim


1


?


cos(


t


)


dt


?


lim


1


?


2


T


2


T


,


n


2< /p>


1


1


?


COS< /p>


(2


t


)


1


dt


?



?


T


2


2


(d) < /p>


?


1


?


?


1


?


x


[

< p>
n


]


?


?


?


u


[


n

]


x


1


[


n


]


?


?


?< /p>


u


[


n


]


?


4


?


?

< p>
2


?



P


?


=0



because


E


?


<


?


.



?


n


?


. Therefore,


E


?


=


??


??


?


x


1


[


n


]

< p>
2


?


?


?


n


?


0


?

?


1


?


?


?


4


?


?


4< /p>




3


2


=


?


,



(e)


[


n

< p>
]


=


e


?


j


(


2


?

8


)


,


[


n


]


2


=1. therefore,


E


?


=


??


x


2


x


2


?


x


2


[


n


]


??





P


?


=


lim

N


1


?


N


??


2


N


?


1


n


??


N


n< /p>


x


2


[


n


]


2


N


1

< p>
?


lim


1


?

< p>
1


.



?


N


??


2


N

< br>?


1


n


??

N


2


2


2


(f)


x


[


n


]


=


?


?


?


. Therefore,


E


?


=


??


=


??


?


=


??


?


,



[


n

< p>
]


3


?


cos

< p>
?


x


cos(


n


)


?


3


cos(


n


)


?


?

< p>
??


?


4


?


??


4


??


4



?


?


?


?


.


(a) The signal x[n] is shifted by 3 to the right. The shifted signal will be zero for


n<1, And n>7.




(b) The signal x[n] is shifted by 4 to the left. The shifted signal will be zero for


n<-6. And n>0.




(c) The signal x[n] is flipped signal will be zero for n<-1 and n>2.



(d) The signal x[n] is flipped and the flipped signal is shifted by 2 to the right. The


new Signal will be zero for n<-2 and n>4.



(e) The signal x[n] is flipped and the flipped and the flipped signal is shifted by 2 to


the left.




This new signal will be zero for n<-6 and n>0.



. (a)


x(1-t)


is


obtained


by


flipping


x(t)


and


shifting


the


flipped


signal


by


1


to


the


right.




Therefore, x (1-t) will be zero for t>-2.



P


?

=


lim


N


?

?


1


cos


?

?


N


??


2


N


?


1


n


? ?


N


4


n


1< /p>


?


cos(


n


)


1


2


)


?


1



lim


(


?


N


??


2


N


?


1


n

< p>
?


2


2


??


N


N


?



(b) From (a), we know that x(1-t) is zero for t>-2. Similarly, x(2-t) is zero for t>-1,





Therefore, x (1-t) +x(2-t) will be zero for t>-2.




(c) x(3t) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t)


will be





zero for t<1.




(d) x(t/3) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t)


will be





zero for t<9.



(a)


x


1

(


t


) is not periodic because it is zero for t<0.




(b)


x


2


[


n


]=1 for all n. Therefore, it is periodic with a fundamental period of 1.




(c)

< br>x


3


[


n


] is as shown in the Figure .




1



1



1







x


3


[





-3



5




-4< /p>


0


1


n




4





-1



-1



-1



Therefore, it is periodic with a fundamental period of 4.



. (a)



1


1


[


n


]


=


x< /p>


[


n


]


?


x


[


?


n

< p>
]


?


(


u


[


n


]


?

u


[


n


?


4]


?


u


[


?


n


]


?


u


[


?


n


?


4])



x


?


v


1


1


2


1


2




Therefore,


x


[


n


]


is zero for


x


[


n


]

>3.



?


v


1



(b) Since


x


1


(


t


) is an odd signal,


x


[


n


]


is zero for all values of t.



?


?


?


?


?


?


?


1


?


v


?


2


?



(c)


1


[


n


]


?


?


?


x


3


?


v


2


n


?


n


?

< br>?



1


?


?


1


?


?


1


?


?


x


1


[


n


]


?


x


1


[


?


n


]


?


2

< br>?


?


?


u


[


n


?


3]


?


?


?


u


[< /p>


?


n


?


3]


?


?


2


?


?


?


?


?


2


?


?


?

< br>




Therefore,



v


1


?


v


?


x


[


n


]


?


is zero when


n


<3 and when

< p>
n


3


?


5


t


5


t


4

4


?


?


.



(d)


1


1

(


t


)


?


?


(


x


(


t< /p>


)


?


x


(


?


t


))


?


?


e


?


x


?


2


2


?

< br>u


(


t


?


2)


?


e


u


(


?


t


?


2)


?



?


Therefore,


?


v


?


x


(


t


)


?


is zero only when


t


4


?


?


.



. (a)


?


l


{


x


1


(


t


)}


?


?


2


?

< p>
2


e


cos(0


t


?


?


)






(b)


?


?


l


{


x


(


t


) }


?


?


2


co s(


?


)cos(3


t


?


2


?


)

?


cos(3


t


)


?


e


0


t

cos(3


t


?


0)



2


4


?

< br>?


0


t


(c)

< p>
?


?


l


{


x


(


t


)}

< br>?


?


e


?


t


sin(3


?


?

< br>t


)


?


e


?


t


sin(3


t

< br>?


?


)



3


2


(d)


?


?


l


{


x


(


t


)}


?< /p>


?


?


e


?


2


t


sin(100


t


)


?


e


?< /p>


t


sin(100


t

?


?


)


?


e


?


2


t


co s(100


t


?


)


4


2


. (a)


(


t


)


is a periodic complex exponential.



?


x


1








2







x


(


t


)


?


j


e


1


j


10


t


?


e


?


?


?


j

?


10


t


?


?


2


?


?



(b)


x


(


t


)


is a complex exponential multiplied by a decaying exponential. Therefore,



is not periodic.





c



x


3


[


n


]


is a periodic signal.







x


[


n


]


is a complex exponential with a fundamental period of


2


?


?


?


.



3


2< /p>


x


3


[


n


]


=


e


j

< p>
7


?


n


=


e


j


?


n

.



(d)


x


[


n


]


is a periodic signal. The fundamental period is given by N=m(



3


2


?


)



4

3


?


/


5


=


m


(


10


) .


By choosing m=3. We obtain the fundamental period to be 10.



5


(e)


x


[


n


]


is


not


periodic.


x


[


n


]


is


a


complex


exponential


with


w


=3/5.


We


cannot


find


any


5


0


integer m such that m(


2


?


) is also an integer. Therefore,


w


.





















x


[


n


]


5


is not periodic.



0


x

< p>
(


t


)=2cos(10t



1)-sin(4t-1)



Period of first term in the RHS =


2


?


?


?

< br>.



10


4

5


Period of first term in the RHS =


2


?


?


?

< p>
.



2


Therefore, the overall signal is periodic with a period which the least common



multiple of the periods of the first and second terms. This is equal to


?


.



x[n] = 1+


e


j


4


?


n


?

< br>e


j


5


?


n



2


.



7


Period of first term in the RHS =1.



Period of second term in the RHS =


?


2


?


?


=7



when m=2




?


?


?


4


/


7< /p>


?


Period of second term in the RHS =


?


2


?

?


?


?


?


2


?


/


5


?< /p>


=5 (when m=1)





Therefore,


the


overall


signal


x[n]


is


periodic


with


a


period


which


is


the


least


common





Multiple of the periods of the three terms inn x[n].This is equal to 35.



. The signal x[n] is as shown in figure . x[n] can be obtained by flipping u[n] and then



Shifting the flipped signal by 3 to the right. Therefore, x[n]=u[-n+3]. This implies


that



M=-1 and no=-3.





X[


n


]








-


-


-


0



1



2



3



n




3



2



Figure S


1





?


0


,


t


?


?


2



y


(t)=


x


(


?


)


dt


=


(


?


(


?< /p>


?


2


)


?


?


(


?


?

< p>
2


))


dt


=

< p>
,


?


1


,


?


2


?


t

?


2



?


?


?


?


?


?< /p>


?


0


,


t


?


2


?


t

< p>
?


t


Therefore

E


?


?


2



?


dt


?


4< /p>


?


2


The signal


x


(t) and its derivative


g


(t) are shown in Figure .




x


(t)




g


(t)




1




-1



1





-1



0



1



2



0



t







-3



-3




-2





Figure S



Therefore




g


(


t


)


?


3


?


?


(


t


?


2


k


)


?


3

< br>?


?


(


t


?


2


k


?


1


)



k


?


??


k


?


??


?


?


2



t



This implies that A


1


=3, t


1


=0, A


2


=-3, and t


2


=1.



(a) The signal x


2


[n], which is the input to S


2


, is the same as y


1


[n].Therefore ,



1


x


2


[n-3]



2


1


= y


1


[n-2]+


y


1


[n-3]



2


y


2


[n]= x


2


[n-2]+


=2x


1


[n-2] +4x


1


[n-3] +


1


( 2x


1


[n-3]+ 4x


1


[n-4])



2


=2x


1


[n-2]+ 5x


1


[n-3] + 2x


1


[n-4]



The input-output relationship for S is



y[n]=2x[n-2]+ 5x [n-3] + 2x [n-4]



(b)


The


input-output


relationship


does


not


change


if


the


order


in


which


S


1


and


S


2


are


connected


series reversed. . We can easily prove this assuming that S


1


follows S


2


. In this case , the


signal x


1


[n], which is the input to S


1


is the same as y


2


[n].



Therefore y


1


[n] =2x


1


[n]+ 4x


1


[n-1]



= 2y


2


[n]+4 y


2


[n-1]



=2( x

< br>2


[n-2]+


1


1

< p>
x


2


[n-3] )+4(x


2


[n-3]+


x


2


[n-4])



2


2


=2 x< /p>


2


[n-2]+5x


2

< br>[n-3]+ 2 x


2


[n-4]



The input-output relationship for S is once again



y[n]=2x[n-2]+ 5x [n-3] + 2x [n-4]



(a)The system is not memory less because y[n] depends on past values of x[n].



(b)The output of the system will be y[n]=


?


[


n


]


?

< p>
[


n


?


2


]


=0



(c)From


the


result


of


part


(b),


we


may


conclude


that


the


system


output


is


always


zero


for


inputs of the form

< p>
?


[


n


?


k


]


, k


?



?


. Therefore , the system is not invertible .



(a)


The


system


is


not


causal


because


the


output


y(t)


at


some


time


may


depend


on


future


values


of x(t). For instance , y(-


?


)=x(0).



(b) Consider two arbitrary inputs x


1


(t)and x


2


(t).



x


1


(t)


?


y


1


(t)= x


1


(sin(t))



x


2


(t)


?


y


2


(t)= x


2


(sin(t))



Let


x


3


(t)


be


a


linear


combination


of


x


1


(t)


and


x


2


(t).That


is


, x


3


(t)=a


x


1


(t)+b


x


2


(t)



Where a and b are arbitrary scalars .If x


3


(t) is the input to the given system ,then the


corresponding output y


3


(t) is y


3


(t)= x


3


( sin(t))



=a x


1


(sin(t))+ x


2


(sin(t))



=a y


1


(t)+ by


2


(t)



Therefore , the system is linear.



.(a) Consider two arbitrary inputs x


1


[n]and x


2


[n].



x


1


[n]


?


y


1


[n] =


x


2


[n ]


?


y


2


[n] =


n

?


n


0


k


?


n


?


n


0< /p>


n


?


n


0


?


x


[


k

< p>
]



1


k


?


n


?


n

0


?


x


[


k


]



2


Let x


3


[n] be a linear combination of x


1


[n] and x


2


[n]. That is :



x


3


[n]= ax


1


[n]+b x


2


[n]



where a and b are arbitrary scalars. If x


3


[n] is the input to the given system, then the


n


?


n


0


corresponding output y


3


[n] is y


3


[n]=


n

?


n


0


k


?


n


?


n


0< /p>


?


x


[


k


]



3


n

< p>
?


n


0


n


?


n


0


1

2


k


?


n


?


n


0


k


?< /p>


n


?


n


0


=

< p>
k


?


n


?


n


0


?


(

ax


[


k


]


?


bx


[


k


])


=a


?


x


[


k


]


+b


?


x


[


k


]



1


2


= ay


1


[n]+b y


2


[n]



Therefore the system is linear.



(b) Consider an arbitrary input x


1


[n].Let



n


?


n


0


y


1


[n] =


k


?


n


?


n


0


?


x


[


k


]



1


be


the


corresponding


output


.Consider


a


second


input


x


2


[n]


obtained


by


shifting


x


1


[n]


in


time:



x


2


[n]= x

1


[n-n


1


]

< br>


The output corresponding to this input is



n


?

< p>
n


0


y


2


[n]=


k


?


n

< p>
?


n


0


?


x


[


k


]

=


?


x


[


k


?


n


]


=


?


x< /p>


[


k


]



2


1


1


k

< p>
?


n


?


n


0


1


k


?

n


?


n


1


?


n


0


n


?< /p>


n


1


?


n


0


1


k


?

< p>
n


?


n


1


?


n


0


n

?


n


0


n


?


n


1


?


n< /p>


0


Also note that y


1


[n- n


1


]=


?


x


[


k


]


.< /p>



Therefore , y


2


[n]= y


1


[n- n


1


]



This implies that the system is time- invariant.



(c) If


x


[


n


]


< B, then y[n]


?


(2 n


0


+1)B.



Therefore ,C


?


(2 n


0


+1)B.



(a) (i) Consider two arbitrary inputs x


1


(t) and x


2


(t). x


1


(t)


?


y


1


(t)=


t

x


1


(t-1)



x


2


(t)


?


y


2


(t)= t


x

< br>2


(t-1)



Let


x


3


(t)


be


a


linear


combination


of


x


1


(t)


and


x


2


(t).That


is x


3


(t)=a


x


1


(t)+b


x


2


(t)



where a and b are arbitrary scalars. If x


3


(t) is the input to the given system, then the


corresponding output y


3


(t) is y


3


(t)= t


x


3


(t-1)



= t


(ax


1


(t-1)+b x


2


(t-1))



= ay


1


(t)+b y


2


(t)



Therefore , the system is linear.



(ii) Consider an arbitrary inputs x


1


(t).Let y


1


(t)= t


x

< br>1


(t-1)



be the corresponding output .Consider a second input x


2


(t) obtained by shifting x


1


(t) in


time:



x


2


(t)= x

1


(t-t


0


)

< br>


The output corresponding to this input is y


2


(t)= t


x


2


(t-1)= t


x


1


(t- 1- t


0


)



Also note that y


1


(t-t


0


)= (t-t


0


)


x


1


(t- 1- t


0


)


?


y


2


(t)



Therefore the system is not time- invariant.



(b) (i) Consider two arbitrary inputs x


1


[n]and x


2


[n]. x


1


[n]


?


y


1


[n] = x


1


2


[n-2]



x


2


[n ]


?


y


2


[n] = x


2


2


[n-2].



Let x


3


(t) be a linear combination of x


1


[n]and x


2


[n].That is x


3


[n]= ax


1


[n]+b x


2


[n]



2


2


2


2


2< /p>


2


2


2


wher e a and b are arbitrary scalars. If x


3


[n] is the input to the given system, then the


corresponding output y


3


[n] is y


3


[n] = x


3


2


[n-2]



=(a x


1


[n-2] +b x


2


[n-2])


2



= a


2


x


1


2< /p>


[n-2]+b


2


x

2


2


[n-2]+2ab x


1


[n-2] x


2


[n-2]



ay


1


[n]+b y


2


[n]



Therefore the system is not linear.



(ii) Consider an arbitrary input x


1


[n]. Let y


1


[n] = x


1


2


[n-2]



?


be


the


corresponding


output


.Consider


a


second


input


x


2


[n]


obtained


by


shifting


x


1


[n]


in


time:



x


2


[n]= x


1


[n- n


0


]



The output corresponding to this input is



y


2


[n] = x


2


2


[n-2].= x


1


2


[n-2- n


0


]



Also note that y


1


[n- n


0


]= x


1


2


[n-2- n


0


]



Therefore , y


2


[n]= y


1


[n- n


0


]



This implies that the system is time- invariant.



(c) (i) Consider two arbitrary inputs x


1


[n]and x


2


[n].



x


1


[n]


?


y


1


[n] = x


1


[n+1]- x


1


[n-1]



x


2


[n ]


?


y


2


[n] = x


2


[n+1 ]- x


2


[n -1]



Let x


3


[n] be a linear combination of x


1


[n] and x


2


[n]. That is :



x


3


[n]= ax


1


[n]+b x


2


[n]



where a and b are arbitrary scalars. If x


3


[n] is the input to the given system, then the



corresponding output y


3


[n] is y


3


[n]= x


3


[n+1]- x


3


[n-1]



=a x


1


[n+1]+b x


2


[n +1]-a x


1


[n-1]-b x


2


[n -1]



=a(x


1


[n+1]- x


1


[n-1])+b(x


2


[n +1]- x


2


[n -1])



= ay


1


[n]+b y


2


[n]



Therefore the system is linear.



(ii) Consider an arbitrary input x


1


[n].Let y


1


[n]= x


1


[n+1]- x


1


[n-1]



be the corresponding output .Consider a second input x


2


[n] obtained by shifting x


1


[n] in


time: x


2


[n]= x


1


[n-n


0


]



The output corresponding to this input is



y


2


[n]= x


2


[n +1]- x


2


[n -1]= x


1


[n+1- n


0


]- x


1


[n-1- n


0


]



Also note that y

< br>1


[n-n


0


]= x


1


[n+1- n


0


]- x


1


[n-1- n


0


]



Therefore , y


2


[n]= y


1

< br>[n-n


0


]



This implies that the system is time- invariant.



(d) (i) Consider two arbitrary inputs x


1


(t) and x


2


(t).



x


1


(t)


?


y


1


(t)=


?

d


?


x


1



(t)


?



x


2


(t)


?


y


2


(t)=


?

d


?


x


2



(t)


?



Let x


3


(t) be a linear combination of x


1


(t) and x


2


(t).That is x


3


(t)=a x


1


(t)+b x


2


(t)



where a and b are arbitrary scalars. If x


3


(t) is the input to the given system, then the


corresponding output y


3


(t) is y


3


(t)=


?

d


?


x


3



(t)


?




=


?


d


?


ax


1



(t)


+


b


x


2



(t)


?




=a


?


d


?< /p>


x


1



(t)< /p>


?


+b


?


d


?


x


2



(t)


?


= ay


1


(t)+b y


2


(t)



Therefore the system is linear.



(ii) Consider an arbitrary inputs x


1


(t).Let



y


1


(t)=


?


d


?


x


1



(t)


?


=


x


1



(t)


-


x


1


(


?


t


)



2


be the corresponding output .Consider a second input x


2


(t) obtained by shifting x


1


(t) in


time:



x


2


(t)= x

1


(t-t


0


)

< br>


The output corresponding to this input is



y


2


(t)=


?


d


?


x


2



(t)


?


=


x


2



(t)


-


x


2


(


?


t


)



2


=


x


1



(t


-


t


0


)


-


x

1


(


?


t


?


t


0


)



Also note that y


1


2


(t-t


0

)=


x


1


(t


-


t


0


)


-


x


1


(


?


t


?


t


0


)


2


?


y


2


(t)



Therefore the system is not time- invariant.



(a) Given








x


(


t


)


=


e


2


jt


y(t)=


e



x

(


t


)


=


e


?


2


jt


j


3


t



?


j


3


t









Since the system liner



Therefore




(b) we know that



y(t)=


e


?


j

3


t



< p>
x


1


(


t


)


?


1


/

2


(


e


j


2


t


?


e


?< /p>


2


jt


)


y


(


t


)


= 1/2(


e


j


3


t


+


e


1


)



x


(t)=


1


cos(2t)


y


(

< p>
t


)


=cos(3t)



1


< p>
x


2


(t)=cos(2(t-1/2))= (


e


?


j


e


2


jt


+


e





< p>
j


e


?


2


jt


)/2



Using the linearity property, we may once again write



x


1

(t)=


1


?


j

< br>j


(


e


e

2


jt


+


e


2


e


?


2


j t


)


y


1

(


t


)


=(


e


?


j


e


3


jt


+


e


e< /p>


?


3


jt


)= cos(3t-1)



j


Therefore,


< p>
x


1


(t)=cos(2(t-1/2))


y


(


t


)


=cos(3t-1)



1


signals are sketched in figure .





2



x(t-1)




x


(2-t



1




-1




t



0



1



2



3



-1



0





-1




x


(4-t/2)







4



6




2



1



8



10



12



1



t



2



1



1



2



2



3



4



t



x


(2t+1)



1



-1




2



1



0




t



[


x


(


t


)


?


x


(


?


t


)]


u


(


t


)



0



1



t



-3/2



3/2



t



Figure



The signals are sketched in figure



The even and odd parts are sketched in Figure




x[3- n]




x[n-4


1




1/2



0



0



1



2



3



7



n



1



2



-1/2



3



1



1/2



7



n



(b)










1



2



x[n]u[n-3]=x[n]




x[3n+1]



1



x[3n]



1/2




2



n



n




1



-1




0



1



2



-1



0



n




(d)



-1/2




0



1



2



(c)



(f)









n



x[3- n]/2 +(-1)


x[n]/2




1




1



1/2





-4



0



1



2



n





-2



0



2



n



(h)





-1



(g)



Figure




x


0


(t)




x


0


(t)




1/2



1/




2





-2



-1



0



1



2



t



-2



0



2



t




(a)



-1/2




x


0


(t)



x


0


(t)





1



1/



1/


2




2




-1



-2



0



1



2



t



-2



-1



0



1



2



t




-1/2



-1/2





(b)




x


0


(t)




x


0


(t)




-3t/


3t/2



2



-t/2





(c)



0



t




0



t






Figure



x[n]



1




xo[n]



1




-7




7



-7




0



0



7



n




n



-1/


-1/

-


-


-


-


-


-


-


-



本文更新与2021-02-13 23:41,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/653479.html

信号与系统奥本海姆英文版课后答案的相关文章