关键词不能为空

当前您在: 主页 > 英语 >

高分子材料高分子材料的基本概念什么是高分子高分子

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-02-12 15:31
tags:

-

2021年2月12日发(作者:checklist)


高分子材料



第一章



一、



高分子材料的基本概念



什么是高分子 :高分子是指由多种原子以相同的、多次重复的结构单元并主要由共价键连接起来的、通常是相对分子

< p>
量为


104



106


的化合物。





体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子。即合成聚合物的起始 原料。



结构单元:在大分子链中出现的以单体结构为基础的原 子团。即构成大分子链的基本结构单元。



单体单元:聚合物中 具有与单体相同化学组成而不同电子结构的单元。



重复单元




Repeating unit


)< /p>


,


又称链节:聚合物中化学组成和结构均可重复出现的最小基本单 元;重复单元连接成


的线型大分子,类似一条长链,因此重复单元又称为链节。



高分子的三种组成情况



1.


由一种结构单元组成的高分子




CH


2


-CH- CH


2


-CH-CH


2


-CH


n


CH


2


CH




< p>










CH


2


CH



n






此时:结构单元=单体单元=重复单元



说明:


n


表示重复单元数,也称为链节数


,


在此等于聚合度。



由聚合度可计算出高分子的分子量:



M=n. M0



式中


:M



是高分子的分子量


M0



是重复单元的分子量



2.


另一种情况:




n H


N-(--CH


-)-COOH


--NH-(--CH


2

< p>
-)-CO--


+


n H


2


O


2


2


5< /p>


n


5



结构单元=重复单元


?



单体单元



结构单元比其单体少了些原 子(氢原子和氧原子)


,因为聚合时有小分子生成,所以此时的结构单元不等于单体单元 。



注意:



对于聚烯烃类采用加成聚合的高分子结构单元与单体的结构是一致的,仅电子排布不同



对于缩聚,开环聚合或者在聚合中存在异构化反应的高分子结构单元与单体的结构不一致



3.


由两种结构单元组成的高分子


< /p>


合成尼龙


-66


的特征:



其重复单元由两种结构单元组成,且结构单元与单体的组成不尽相同,所以 ,不能称为单体单元。



注意:




1


)对于均聚物,即使用一种单体聚合所 得的高分子,其结构单元与重复单元是相同的。



< p>
2


)对于共聚物,即使用两种或者两种以上的单体共同聚合所得的高分子, 其结构单元与重复单元是不同的。



二、高













1














天然高分子:一般有与其来源、化 学性能与作用、主要用途相关的专用名称。如纤维素(来源)


、核酸(来源与化学性


能)


、酶(化学作用)


< br>



合成高分子:


< p>
1


)由一种单体合成的高分子:


“聚”

< p>
+


单体名称。如乙烯:聚乙烯;



丙烯:聚丙烯;



氯乙烯:聚氯乙







2


)以高分子结构特征来命名


.


如聚 酰胺、聚酯、聚醚、聚砜、聚氨酯、聚碳酸酯等。尼龙


-66


: 聚己二


酰己二胺;尼龙


-610


:聚癸 二酰己二胺;尼龙


-6


:聚己内酰胺或聚


ω


-


氨基己酸













2.


商品名称


:


1


)树脂类(未加工成型的原料都称为树脂)

< p>




2


)橡胶类




3


)纤维




如丁苯橡胶---丁二烯、苯乙烯聚合物



氯纶


PVC


聚氯乙烯




乙丙橡胶---乙烯、丙烯共聚物



丙纶


PP


聚丙烯




腈纶


PANC


聚丙烯腈



3. IUPAC


系统命名法



(


1)


确定重复结构单元;



(2)


给重复结构单元命名:按小分子有机化合物的


IUPAC


命名规则给重复结构单元命名;



(3)


给重复结构单元的命名加括弧(括弧必不可少)


,并冠以前缀“聚”





H


H


C


C


H

< br>Cl


H


H


H

H


C


C


C


C


H


Cl


H


C l


CH


3


C CH


2


n


例:



H


H



重复结构单元为:




[1-(


甲氧基羰基

)-1-


甲基乙烯


]


C


C



H


Cl


COOCH


3



聚(


1-


氯乙烯)


三、高













1.


聚合物的结构:



一级结构(近程结构)


:结构单元的化学组成、连接顺序、立体构型,以及支化 、交联等。



是反映高分子各种特性的最主要结构层次。


< br>二级结构(远程结构)


:通常包括高分子链的形态(构象)以及高分子的大小(分 子量)




与高分子链的柔性和刚性有直接关系。



三级结构(聚集态结构)


:聚集态结构也称三级结构,或超分子结构,它是指单位体积 内许多大分子链之间的的排列与


堆砌方式。包括晶态、非晶态、取向态、液晶态及织态等 。




2.


高分子链的近程结构:



高分子链的构型


:


构型:是对分子中 的最近邻原子间的相对位置的表征,也可以说,是指分子中由化学键所固定的原子在空间的几何排


列。



1.


旋光异构


:


若高分子中含有手性


C

原子


,


则其立体构型可有


D


型和


L


型,据其连接方式可分为如下三种:< /p>


(以聚丙


烯为例)


:



1




全同立构高分子:主链上的


C*


的立体构型 全部为


D


型或


L



,



DD DDDDDDDD



LLLLLLLLLLL

< br>;



2




间同立 构高分子:主链上的


C*


的立体构型各不相同

< br>,



D


型与

< br>L


型相间连接,


LDLDLDLDLDLD




立构规整性高分子(


tactic polymer


): C*


的立体构型有规则连接,简称等规高分子。




3




无规立构高分子:主链上的


C*


的立体构型 紊乱无规则连接。



3


、高分子链的远 程结构


:


包括分子量及分子量分布和高分子形态(构象)


。书


P8




分子量:


1



.< /p>


数均分子量:按聚合物中含有的分子数目统计平均的分子量。


< /p>


根据聚合物溶液的依数性测得的,通过依数性方法和端基滴定法测定。











2


)重均分子量:是按照聚合物的重 量进行统计平均的分子量。



根据聚合物溶液对光的散射性质、 扩散性质测得的。通过光散射法测定。



分子量分布:分子量分布越窄,聚合物排布越好。



4


.高分子聚集态结构的特点


.



1



.


聚合物晶态总是包含一定量的非晶相,


100%


结晶的情况是很罕见的。




2



.


聚合物聚集态结构不但与大分子链本身的 结构有关,而且强烈地依赖于外界条件。










四、聚合与高分子化学反应



聚合反应 主要有两类:一是不饱和乙烯类单体及环状化合物,通过自身的加成聚合反应而成高聚物,称为加聚反应;


其反应一般按链式反应机理进行。


另一种是含有两个或两个以上官能团 ,


通过缩合聚合反应而成高聚物,


称为缩聚反应。其按逐步反应 机理进行。



此外,由两种或多种单体进行的加聚反应称为共聚 合反应;有三种原料进行的缩合聚合反应称为共缩聚,它们的产物


都是共聚物。



1.


自由基聚合特点:



(1)


可概括为慢引发、快增长、速终止;







(2)


聚合体系中只有单体和聚合物组成;




(3)


单体转化率随聚合时间的延长 而逐渐增大;






(4)


小量


(0.01-0.1%)


阻聚剂足以使自由基聚合终止。



2


.本体聚合:只有单体本身在引发剂或热、光、辐射的作用下进行 的聚合。



3


.溶液聚合:单体和引发 剂溶于适当溶剂中进行的聚合方法。



4


.悬浮聚合:单体以小液滴状悬浮在水中的聚合。



5


.乳液聚合:单体在水介质中由乳化剂分散成乳液状进行的聚合。


< /p>


6



缩聚反应由含有两个或两个以上官能 团的单体分子间逐步缩合聚合形成聚合物,


同时析出低分子副产物的化学反应,


是合成聚合物的重要反应之一。特点:




1



.


每一高分子 链增长速率较慢,


增长的高分子链中的官能团和单体中的官能团活性相同,


所以每一个单体可以与任


何一个单体或高分子链反应,每一步反应的结果,都 形成稳定的化合物,因此链逐步增长,反应时间长。




2



.


由于分子链中 官能团和单体中官能团反应能力相同,所以,在聚合反应初期,单体很快消失,生成了许多两个或


两个以上的单体分子组成的二聚体、三聚体和四聚体等,即反应体系中存在分子量大小不等的缩聚物。< /p>



四、药用高分子材料通论


< p>
药用高分子材料:指的是药品生产与制造加工过程中使用的高分子材料,药用高分子材料包括作为药 物制剂成分之一


的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料。




第二章



一、高分子的分子运动



1.


高分子运动特点:



(一)运动单元的多重性:



1.


整链的运动


:


以高分子链为一个整体作质量 中心的移动,即分子链间的相对位移。



2.

< br>链段的运动:由于主链


σ



键的 内旋转,使分子中一部分链段相对于另一部分链段而运动,但可以保持分子质量中心


不变 (宏观上不发生塑性形变)




高弹性 :链段运动的结果(拉伸



回复)


;流 动性:链段协同运动,引起分子质心位移。



3.


链节的运动


:


指高分子主链上几个化学键(相当于链 节)的协同运动,或杂链高分子的杂链节运动



4.

< p>
侧基、支链的运动


:


侧基、支链相对于主链的摆动 、转动、自身的内旋转。



(二)


、分子运动的时间依赖性


: < /p>


物质从一种平衡状态在外场作用下,通过分子运动(低分子是瞬变过程,高分子是速度过程 需要时间)达到与外界相


适应的另一种平衡状态。



(三)


、分子运动的温度依赖性



1.


活化运动单元:温度升高,增加了分子热运动的能量,当达到某 一运动单元运动所需的能量时,


就激发这一运动单元


的运动。< /p>



2.


增加分子间的自由空间:


温度升高,


高聚物发生体积膨胀,自由空间加大。


当自由空间增加到某种运动单元所需的大


小时,这一运动单元便可自由运动。












2


、高分子的玻璃化转变







玻璃态、高弹态和粘流态称为聚合物的力学三态。


< p>
温度低,聚合物在外力作用下的形变小,具有虎克弹性行为,形变在瞬间完成,当外力除去后,形变 又立即恢复,


表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻璃态。随着温度的 升高,形变逐渐增大,当温度升高到某一


程度时,形变发生突变,进入区域


II


,这时即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力 除去后,


形变又可逐渐恢复。这种受力能产生很大的形变,除去外力后能恢复原状的性能 称高弹性,相应的力学状态称高弹态。


由玻璃态向高弹态发生突变的区域叫玻璃化转变区 ,


玻璃态开始向高弹态转变的温度称为玻璃化转变温度,



Tg


表示。


当温度升到足够高时,聚合物完 全变为粘性流体,其形变不可逆,这种力学状称为粘流态。高弹态开始向粘流态转变


的温 度称为粘流温度,以


T


f


表示,其间的 形变突变区域称为粘弹态转变区。



二、溶解与高分子溶液



(

< p>


)


、高聚物的溶解




1.


非晶态高聚物的溶解





条件:足够量的溶剂、一定量的非晶态高聚物





溶解过程


:


溶胀到无限溶胀。


(溶解过程的关键步骤是溶胀。其中无限溶 胀就是溶解,而有限溶胀是不溶解。




2.


结晶(晶态)高聚物的溶解





非极性结晶高聚物的溶解





条件:足够量的溶剂,一定量的非极性结晶高聚物,并且加热 到熔点附近。





溶解过程:加热使结晶熔化,再溶胀、溶解。





极性溶解高聚物的溶解





条件:足够量的强极性溶剂,一定量的极性结晶高聚物,不用 加热。





溶解过程:通过溶剂化作用溶解。



(二)


、溶剂的选择



1.


极性相似原则











2.


溶剂化原则









3.


溶解度参数相近原则



三、高聚物的力学性能



1.


应力:单位面积上的内力为应力,其值与外加的应力相等。


< p>
2.


应变:当材料受到外力作用而又不产生惯性移动时,其几何形状和尺寸 会发生变化,这种变化称为应变或形变。



3

< br>.弹性模量:是单位应变所需应力的大小,是材料刚度的表征。



4.


硬度:是衡量材料抵抗机械压力能力的一种指标。



5.


强度:是材料抵抗外力破坏的能力。



6.


高聚物力学性能的最大特点是高弹性和粘弹性


:


1



.

< p>
高弹性:


处于高弹态的高聚物表现出的独特的力学性能。

< br>是由于高聚物极大的分子量使得高分子链有许多不同的构


象,而构象的改变导致高 分子链有其特有的柔顺性。链柔性在性能上的表现就是高聚物的高弹性。橡胶就是具有高弹


性的材料。弹性形变的本质也就是高弹性变的本质。



2




.


粘弹性:指高聚物材料不但具有弹性材料的一般特性,同时还具有粘性流体的一些特性。



力学松弛:高聚物的力学性能随时间的变化统称力学松弛。最基本 的有:蠕变、应力松弛、滞后、力学损耗。



蠕变:在一定的温 度和恒定的外力作用下(拉力,压力,扭力等)


,材料的形变随时间的增加而逐渐增大的 现象。



应力松弛:对于一个线性粘弹体来说,在应变保持不变 的情况下,应力随时间的增加而逐渐衰减,这一现象叫应力松


弛。



滞后现象:高聚物在交变力作用下,形变落后于应力变化的现象。

< br>


力学损耗:由于力学滞后而使机械功转换成热的现象。




第三章



一、凝胶与功能水凝胶(这节要多看书多理解)书


p63


1.


凝胶是指溶胀的三维网状结构高分子,即聚合物分子间相互连接 ,形成空间网状结构,而在网状结构的孔隙中又填


充了液体介质。



影响胶凝作用的因素:浓度、温度、电解质。



2


.凝胶的性质




1


)触变性




2


)溶胀性




3


)脱水收缩性



4


)透过性





3.


凝胶的分类


< br>(1)


物理凝胶:由非共价键(氢键或范德华力)相互连接,形成网状结构。由于 聚合物分子间的物理交联使其具有可


逆性,只要温度等外界条件改变,物理链就会破坏, 凝胶可重新形成链状分子溶解在溶剂中成为溶液,也称为可逆凝


胶。


(2)


化学凝胶:是高分子链之间以化学键形成的交联 结构的溶胀体,加热不能溶解也不能熔融,结构非常稳定,也称


为不可逆凝胶。



(3)


冻胶:指液体含量很多的凝胶,通常 在


90%


以上;多数由柔性大分子构成,具有一定的柔顺性,网 络中充满的溶剂


不能自由流动,所以表现出弹性的半固体状态,通常指的凝胶均为冻胶。



(4)


干凝胶:


液体含量少的凝胶,其中大部分是固体成分。在吸收适宜液体膨胀后即可转变为冻胶。




4.


功能水凝胶:对温度或


pH


等环境因素的变化所给予的刺激有非常明确或显著的应答。



根据环境变化的类型不同,


环境敏感水凝 胶可分为:温敏水凝胶、


pH


敏水凝胶、盐敏水凝胶、光敏水凝 胶、电场响应水凝胶、形状记忆水凝胶。



二、粒子分散结构:


有以下四种类型:



1.


药物粒子分散在高聚物基材中的复合结构,高聚物为连续相 ,如速释型固体分散制剂。



2.


药物 粒子和高聚物粒子分散于同一或另一高聚物基材中的复合结构,如传统的淀粉基可崩解固体片剂

< br>


3.


药物粒子包裹在聚合物囊(膜)中,再分散在聚合 物基材中



4.


药物粒子分散在高聚物 凝胶网络中的复合结构,这类药物通常是疏水性的,如聚氧乙烯


-


聚氧丙烯共聚物的水凝胶制


成的皮鲁卡品滴眼剂等缓释给药系统。


三、缓控释性材料



1.


缓释制剂:指用药后能在较长时间内持续缓慢释放药物以达到延长药效目的的制剂。系指口服药 物在规定释放介质


中,按要求缓慢地非恒速释放。


< p>
2.


控释制剂:药物从制剂中按一定规律缓慢、恒速释放,使机体内药物浓 度保持相对恒定,体内释药不受


pH


影响。系

< br>指口服药物在规定释放介质中,按要求缓慢地恒速或接近恒速释放。


< p>
四、分散传质过程(药物的扩散过程)




1.


药物溶出并进入周围的聚合物或孔隙;



2.


由于浓度梯度,药物分子扩散通过聚合物屏障;

< p>


3.


药物由聚合物解吸附;


4.


药物扩散进入体液或介质。




第四章





药用天然高分子材料



一、淀粉



1.


来源





淀粉


(starch)


广泛存在于绿色植物的须根和种子中,根据植物种类、部位、含量不同,各以特有形状的淀粉粒


而存在。



药用淀粉多以玉米淀粉为主。



2.


化学结构和组成



淀粉是由许多葡萄糖分子脱水缩聚而成的高分子化合物。



结构单元:


D


-吡喃环型葡萄糖

< p>


淀粉组成可以分为两类,直链淀粉与支链淀粉。自然淀粉中直链,支链淀 粉之比一般约为


15-28%



72- 85%


,视植物


种类、品种、生长时期的不同而异。

< p>


1


)直链淀粉





是以


α< /p>


-1



4


苷键连 接而成的线型聚合物。直链淀粉由于分子内氢键作用,链卷曲成螺旋形,每个螺旋


圈大约 有


6


个葡萄糖单元。



2


)支链淀粉





是由


D-


葡萄糖聚合而成的分支状淀粉,其直链部分也为


α


-1



4


苷键,而分支处则 为


α


-1



6


苷键。



在各种淀粉中,直链淀粉约占


20%-25%


,支链淀粉约占


75% -85%


3.


性质



1


)形态与物理常数



玉米淀粉为白色结晶粉末,流动性不良,淀粉在干燥处且不受热时,性质稳定。



2


)淀粉的溶解性、含水量与氢键作用力



溶解性:呈微弱的亲水性并能分散与水,淀粉不溶于水、乙醇和乙醚等,但有一定的 吸湿性。



含水量:在常温、常压下,淀粉有一定的平衡水分, 但淀粉含有很高的水分却不显示潮湿而呈干燥的粉末状,这主要


是淀粉中的葡萄糖单元存 在的众多醇羟基与水分子相互作用形成氢键的缘故。



不同淀粉 的含水量存在差异,这是由于淀粉分子中羟基自行缔合及与水分子缔合程度不同所致。



3


)淀粉的吸湿与解吸



吸湿:淀粉中含水量受空气湿度和温度的影响,在一定的相对湿度和温度条件下,淀粉吸收水分与释放 水分达到平衡,


此时淀粉所含的水分称为平衡水分。



用做稀释剂的淀粉和崩解剂的淀粉,宜用平衡水分下的玉米淀粉。



解吸:淀粉中存在的水,分为自由水和结合水两种状态,自由水仍具有普通水的性质,随环境 的变化而变化,它具有


生理活性,可被微生物利用,而结合水则不能。

< br>


4


)淀粉的水化、膨胀、糊化



水化


:淀粉颗粒中的淀粉分子有的处于有序态(晶态)


,有的处于无序态(非晶态)它们构成淀粉颗粒的结晶相和无定


性相,无 定性相是亲水的,进入水中就吸水,先是有限的可以膨胀,而后是整个颗粒膨胀的现象。



膨胀


:淀粉在


60-80


℃热水中,能发生膨胀,直链淀粉分子从淀粉粒中向水中扩散,形成胶体溶液,而支链淀粉则仍以


淀粉粒残余的形式保留在水中。



解释:在 淀粉粒中,支链淀粉构成有序的立体网络,其中间为直链淀粉占据,在热


















水中, 处于无序


状态的螺旋结构的直链淀粉分子,伸展成线形,脱离网络,故而分散于水中,而 分离了直链淀粉的支链淀粉粒,在热


水中加热并加搅拌后可形成稳定的粘稠胶体溶液,冷 却后仍然不变化,这种支链淀粉经脱水干燥后,粉碎成粉末,仍


易在凉水中溶胀并分散成 胶体溶液;而分离出来的直链淀粉分散液虽经同样的处理,在热水中也不复溶。




糊化:若不实施直链淀粉与支链淀粉的分离,在过量水中,淀 粉加热至


60~80


℃时,则颗粒可逆地吸水膨胀,至某一温< /p>


度时,整个颗粒突然大量膨化、破裂,晶体结构消失,最终变成粘稠的糊,虽停止搅拌,也 都下沉的现象。



糊化的本质


:水分子 加入淀粉粒中,结晶相和无定性相的淀粉分子之间的氢键断裂,破坏了缔合状态,分散在水中成

< br>为亲水胶体。



5


)淀粉的回升(老化、凝沉





回生或老化:淀粉糊或淀粉稀溶液 再低温静置一段时间,会变成不透明的凝胶或析出沉淀的现象。形成的淀粉称为回


生淀粉 。老化可视为糊化的逆转,但老化不能是淀粉彻底逆转复原成生淀粉的结构状态。



回生的本质是


:糊化的淀粉在温度降低时分子运动速度降低,直链淀 粉分子和支链淀粉分子的分枝趋于平行排列,相


互靠拢,彼此以氢键结合,重新组成混合 的微晶束,它们与水的亲和力下降,故易从水中分离,浓度低时析出沉淀,


浓度高时,由 于氢键作用,糊化分子又自动排列,构成致密的三维网状结构,便形成凝胶体。




4


、反应



1


)水解反应






存在于 淀粉分子中糖基之间的连接键——苷键,可以在酸或酶的催化下裂解,形成相应的水解产物,

呈现多糖具备的水解性质。



2


)显色反应






淀粉与 碘试液作用时形成有色包结物,螺旋结构长颜色深,所以直链淀粉与碘化钾、碘溶液作用呈蓝

色,支链淀粉呈紫红色。



5.


应用



淀 粉在药物制剂中主要用作片剂的稀释剂、崩解剂、粘合剂、助流剂,崩解剂。



淀粉应用安全无毒,同时药典品不得检出大肠杆菌、活蛹,


1g


淀粉含霉菌应在


100


个以下,杂菌不得多于< /p>


1000


个。



可灭菌玉米淀粉是玉米淀粉经化学及物理改性后的淀粉,遇水或蒸汽灭菌不糊化,是供某些医疗用途的改性淀粉。



二、糊精



1


.来源与制法


淀粉水解是大分子逐步降解为小分子的过程,这个过程的中间产物总称为糊精。


< /p>


糊精的制法是在干燥状态下将淀粉水解,其过程有四步:酸化、预干燥、糊精化及冷却。< /p>



2.


分类






在药剂 学中应用的糊精有白糊精和黄糊精。根据它们遇碘


-


碘化钾溶液 产生的颜色不同,分为蓝糊精,红糊


精和无色糊精等。



3.


性质






糊精为白色、淡黄色粉末。不溶于 乙醇


(95



)


、乙醚,缓缓溶于水,易溶于热水



四、羧甲基淀粉钠



1.


结构






为聚


α< /p>


-


葡萄糖的羧甲基醚



2.


性质






为白色至类白色自由流动的粉末, 能分散于水,形成凝胶,醇中溶解度约


2%


,不溶于其它有机溶 剂,有较


大的吸湿性



3.


应用






羧甲淀粉钠作为胶囊剂和片剂的崩 解剂广泛应用于口服药物制剂中,


在湿法制粒时,


将羧甲淀粉钠 加入颗粒


内部,其润湿时起黏合剂的作用,而在颗粒干燥后又能起崩解剂的作用。是某些 口崩片的理想辅料。也可用作助悬剂。





五、纤维素



1.


来源






纤维素存在于一切植物中,是构成植物细胞壁的基础物质。



2.


结构






结构单元是


D-


吡喃葡萄糖基,相互间以


?


-< /p>


1,4-


苷键连接,分子式为


(C6H1 0O5)n




3.


性质



1


)化学反应性






纤维素 的氧化、酯化、醚化、分子间形成氢键、吸水、溶胀以及接枝共聚等都与纤维素分子中存在


大量羟基有关。



2


)氢键的作用



:




纤维素结晶区和无定形区的羟基,基本上是以氢键形式存在



3


)吸湿性





:



< /p>


纤维素吸水后,再干燥的失水量,与环境的相对湿度有关,纤维素在经历不同湿度的环境后 ,其平衡


含水量的变化,存在滞后现象,即吸附时的吸着量低于解吸时的吸着量。



4


)溶胀性










纤维素 的有限溶胀可分为结晶区间溶胀和结晶区内溶胀。纤维素溶胀能力的大小取决于碱金属离子


水化度,纤维素的溶胀是放热反应,温度降低,溶胀作用增加;对同一种碱液并在同一温度下,纤维素的溶胀随 其浓


度而增加,至某一浓度,溶胀程度达最高值。



5


)可水解性










纤维素 大分子的背键对酸的稳定性很低,在酸碱度、温度适合的条件下,能产生水解降解,酸是


催化剂,可降低贰键破裂的活化能,增加水解速度。纤维素对碱在一般情况下是比较稳定的,但在高温下,纤维素 也


产生碱性水解。



六、粉状纤维素



1.


制法





将植物纤维材料纤维浆,用


17.5 %NaOH


溶液在


20


℃处理,不溶解 的部分中包括纤维浆中的纤维素和抗碱的


半纤维素,用转鼓式干燥器制成片状,再经机械 粉碎即得粉状纤维素。



2.


性质





呈白色,无臭,无味,具有纤维素的通性,不同细度的粉末的 流动性和堆密度不一,具有一定的可压性,流


动性较差。



3.


应用





可用于片剂的稀释剂,硬胶囊或散剂的填充剂;在软胶囊中可 用于降低油性悬浮性内容物的稳定剂,以减轻


其沉降作用,也可作口服混悬剂的助悬剂; 用作片剂干性粘合剂的浓度为


5%



- 20%


,崩解剂浓度为


5%-15%


, 助流剂


浓度为


1%-2%


,不得用作注 射剂或吸入剂辅料;在食品工业中可作为无热量食品的添加剂。



七、微晶纤维素



1.


制法






将结晶度高的纤维经强酸水解除去 其中的无定形部分,所得聚合度约为


220


,相对分子质量约为


36000


的结


晶性纤维即为微晶纤维 素。



胶态微晶纤维素:纤维素


+


亲水性分散剂



2.


性质






白色、无臭、无味,多孔、易流动 粉末,不溶于水、稀酸、氢氧化钠液和一般有机溶剂。



可压性:具有高度变形性,极具可压性。


吸附性:为多孔性微细粉末,可以吸附其他物质如水、油和药物等。



分散性:微晶纤维素在水中经匀质器作用,易于分散生成



妈油般的凝胶体。



反应性能:在稀碱 液中少部分溶解,大部分膨化,表现出较高的反应性能。



3.


应用






微晶纤维素


PH


型广泛用作口服片剂及胶囊剂的稀释剂、吸附剂、崩解剂、抗粘附剂;此外也可作 为倍散的


稀释剂和丸剂的赋形剂。微晶纤维素


RC


型作为胶体分散系主要用于干糖浆、混悬剂,有时也作为水包油乳剂和乳膏


的 稳定剂。微晶纤维素球形颗粒,为具有高圆度和机械强度的球形细粒剂,可作为包衣型缓释制剂、苦味掩盖制剂的


核芯,微晶纤维素


AvicelPH-300

< br>系列具有快速崩解性、较好的流动性、可减小片重差异等优点;


Avice KG -801


可以提


高片剂硬度、降低磨损性、少量添加适于在低压 力下压片等优点。



八、醋酸纤维素



1.


来源与制法






醋酸纤维素是部分乙酰化的纤维素。



醋酸纤维素系将纯化的纤维素为原料,加过量的醋酐,以硫酸为催化剂,便全部酯化























成三醋酸


纤维素,


然后水解降低乙酰基含量 ,


达到所需酯化度的醋酸纤维素由溶液中沉淀























出来,


经洗涤、




燥后,得固态产品。



2.


性质



纤 维素经醋酸酯化后分子结构中多了乙酰基,只保留少量羟基,降低了结构的规整性,性质也起了变化:

< p>


变化


1


:耐热性提高, 不易燃烧;变化


2


:吸湿性变小,电绝缘性提高;



变化


3



根据取代基的含量不同,


其溶解度差异很大,


①醋酸纤 维素或二醋酸纤维素比三醋酸纤维素更易溶于有机溶剂,


②醋酸纤维素的乙酰基含量下降 ,亲水性增加,水的渗透性增加;



变化


4


:三醋酸纤维素含乙酰基量最大,熔点最高,因而限制它与增塑剂的配伍应用,并且 也限制了水的渗透性。




-


-


-


-


-


-


-


-



本文更新与2021-02-12 15:31,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/644266.html

高分子材料高分子材料的基本概念什么是高分子高分子的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
高分子材料高分子材料的基本概念什么是高分子高分子随机文章