关键词不能为空

当前您在: 主页 > 英语 >

ICH M7(step4)基因毒性杂质评估和控制◆中英

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-02-11 15:11
tags:

-

2021年2月11日发(作者:秋葵绿)



ASSESSMENT


AND


CONTROL


OF


DNA


REACTIVE(MUTAGENIC)


IMPURITIES


IN


PHARMACEUTICALS TOLIMIT


POTENTIAL


CARCINOGENIC


RISK



为限制潜在致癌风险而对药 物中


DNA


活性(诱变性)杂质进行的评估和控制



M7



Current


Step 4


version


dated 23 June 2014


This Guideline has been developed by the appropriate ICH Expert Working Group and


has been subject to consultation by the regulatory parties, in accordance with the


ICH Process. At Step 4 of the Process the final draft is recommended for adoption


to the regulatory bodies of the European Union, Japan and USA.






M7


Document History


文件历史



Code


文件代码



History


历史



M7


Date


日期



Approval by the Steering Committee under Step 2


6 February 2013


and release for public consultation.



2


阶段由筹委会批准,公开征求意见



M7


Approval by the Steering Committee under Step 4


5 June 2014


and


recommendation


for


adoption


to


the


three


ICH


regulatory bodies.


< br>4


阶段由筹委会批准,推荐


ICH


三方药监局采用



Current Step 4 version


现行版本第


4


阶段< /p>



M7


Corrigendum


to


fix


typographical


errors


and


23 June 2014


replace word “degradants” with “degradation


products” throughout the document.




< p>










degradants







degradation products



.




Legal


Notice:


This


document


is


protected


by


copyright


and


may


be


used,


reproduced,


incorporated into other works, adapted, modified, translated or distributed under


a public license provided that ICH's copyright in the document is acknowledged at


all times. In case of any adaption, modification or translation of the document,


reasonable steps must be taken to clearly label, demarcate or otherwise identify


that changes were made to or based on the original document. Any impression that


the adaption, modification or translation of the original document is endorsed or


sponsored by the ICH must be avoided.




The document is provided


the ICH or the authors of the original document be liable for any claim, damages


or other liability arising from the use of the document.



The


above-mentioned


permissions


do


not


apply


to


content


supplied


by


third


parties.


Therefore,


for


documents


where


the


copyright


vests


in


a


third


party,


permission


for


reproduction must be obtained from this copyright holder.




ASSESSMENT


AND


CONTROL


OF


DNA


REACTIVE


(MUTAGENIC)


IMPURITIES


IN


PHARMACEUTICALS TO


LIMIT


POTENTIALCARCINOGENIC


RISK



为限制潜在致癌风险而对药 物中


DNA


活性(诱变性)杂质进行的评估和控制



ICH Harmonised Tripartite Guideline



ICH


三方协调指南



Having reached


Step 4


of the ICH Process at the ICH Steering Committee meeting


on 5 June 2014, this Guideline


is recommended for adoption to the


three


regulatory


parties to ICH


TABLE OF CONTENTS



1. INTRODUCTION



2. SCOPE OF GUIDELINE



3. GENERAL PRINCIPLES



目录



概述



指南范围



通用原则



4. CONSIDERATIONS FOR MARKETED PRODUCTS



上市产品应考虑的问题



4.1


Post-Approval


Changes


to


the


Drug


批准后原料药化学、生产和质量变更



Substance Chemistry, Manufacturing, and


Controls


4.2


Post-Approval


Changes


to


the


Drug


批准后制剂的化学、生产和质量变更



Product


Chemistry,


Manufacturing,


and


Controls


4.3


Changes


to


the


Clinical


Use


of


Marketed


上市产品临床使用变更



Products


4.4


Other


Considerations


for


Marketed


上市产品其它应考虑问题



Products


5.


DRUG


SUBSTANCE


AND


DRUG


PRODUCT


原料药和制剂杂质评估



IMPURITY ASSESSMENT




5.1 Synthetic Impurities


5.2 Degradation Products


5.3


Considerations


for


合成杂质



降解产物



Clinical


临床研发要考虑的问题



Development


6. HAZARD ASSESSMENT ELEMENTS



7. RISK CHARACTERIZATION



7.1 TTC- based Acceptable Intakes


7.2


Acceptable


Intakes


Based


危害性评估要素



风险特征



根据


TTC


制订可接受摄入量



on < /p>


根据化合物特定风险评估制订的可接受摄


入量


Compound-Specific Risk Assessments


7.2.1 Mutagenic Impurities with Positive


致癌数据有利的诱变性杂质(表


1


中的第


1


Carcinogenicity Data (Class 1 in Table 1)



类)



7.2.2 Mutagenic Impurities with Evidence


具有实用阈值证据的诱变性杂质



for a Practical Threshold



7.3 Acceptable Intakes


in Relation to LTL



LTL

< br>暴露相关的可接受摄入量



Exposure


7.3.1 Clinical Development



7.3.2 Marketed Products



临床研发



已上市产品



7.4


Acceptable


Intakes


for


Multiple


多个诱变性杂质的可接受摄入量



Mutagenic Impurities


7.5


Exceptions


and


Flexibility


in


方法例外情况和弹性



Approaches


8. CONTROL



控制



8.1


Control


of


Process


Related


Impurities


工艺相关杂质的控制



8.2


Considerations


for


Control


Approaches


控制方法要考虑的问题




8.3 Considerations for Periodic Testing



定期检查要考虑的问题



8.4 Control of Degradation Products



8.5 Lifecycle Management



8.6


Considerations


for


降解产物的控制



生命周期管理



Clinical


临床研发要考虑的问题



Development



9. DOCUMENTATION



9.1 Clinical Trial Applications



文件记录



临床试验应用



9.2 Common Technical Document (Marketing


通用技术文件(上市申报)



Application)



NOTES



GLOSSARY



REFERENCES



APPENDICES



注解



术语



参考文献



附录




ASSESSMENT


AND


CONTROL


OF


DNA


REACTIVE


(MUTAGENIC)


IMPURITIES


IN


PHARMACEUTICALS TO


LIMIT


POTENTIALCARCINOGENIC


RISK



为限制潜在致癌风险而对药 物中


DNA


活性(诱变性)杂质进行的评估和控制



1. INTRODUCTION



概述



The


synthesis


of


drug


substances


involves


the


use


of


reactive


chemicals,


reagents,


solvents, catalysts, and other processing aids. As a result of chemical synthesis


or


subsequent


degradation,


impurities


reside


in


all


drug


substances


and


associated


drug products. While ICH Q3A(R2): Impurities in New Drug Substances and Q3B(R2):


Impurities


in


New


Drug


Products


(Ref.


1,


2)


provides


guidance


for


qualification


and


control


for


the


majority


of


the


impurities,


limited


guidance


is


provided


for


those


impurities that are DNA reactive. The purpose of this guideline is to provide a


practical


framework


that


is


applicable


to


the


identification,


categorization,


qualification,


and


control


of


these


mutagenic


impurities


to


limit


potential


carcinogenic risk. This guideline is intended to complement ICH Q3A(R2), Q3B(R2)


(Note 1), and ICH M3(R2): Nonclinical Safety Studies for the Conduct of Human


Clinical Trials and Marketing Authorizations for Pharmaceuticals (Ref. 3).

< p>
原料药合成牵涉到使用活性化学物质、试剂、


溶剂、


催化剂和其它工艺助剂,


导致在所有原


料药及其制剂中会残留 有化学合成或其降解产物、杂质。在


ICH


Q3A(R2)< /p>


新原料药中的杂质



Q3B(R2)


新制剂中的杂质(参考文献


1


< p>
2


)中提供了关于主要杂质定性和控制的指南,对


DNA


活性杂质给出了有限的指南。本指南的目的是提供实用框架,以应用于这些诱变杂 质的


鉴别、


分类、


定性和控制,


对潜在致癌风险进行控制。


本指南意在补充


I CH


Q3A(R2)



Q3B(R2 )


(注解


1




ICH


M3(R2)


药物人用临床 试验和上市许可中的非临床安全性研究


(参考文献


3

< p>




This


guideline


emphasizes


considerations


of


both


safety


and


quality


risk


management


in


establishing


levels


of


mutagenic


impurities


that


are


expected


to


pose


negligible


carcinogenic


risk.


It


outlines


recommendations


for


assessment


and


control


of


mutagenic


impurities


that


reside


or


are


reasonably


expected


to


reside


in


final


drug


substance or product, taking into consideration the intended conditions of human


use.



本指 南强调在建立诱变性杂质水平时考虑安全性和质量风险管理两方面,


该水平应该仅表现< /p>


出可忽略不计的致癌风险。


指南在考虑药物在人用时的条件下,< /p>


给出了对原料药或制剂中残


留或可能残留的诱变性杂质评估和控制 的建议。



2. SCOPE OF


GUIDELINE


指南适用范围



This document is


intended to provide


guidance


for new drug substances


and new drug


products


during


their


clinical


development


and


subsequent


applications


for


marketing. It also applies to post-approval submissions of marketed products, and


to new marketing applications for products with a drug substance that is present


in a previously approved product, in both cases only where:


本指南意在给研发期间和上市申报期间的新原料药和新制剂提供指南。


它也适 用于已上市药


物的批准后申报,以及之前已批准上市的制剂中的同样原料药生产的另一制 剂新上市申报。


当上述申报符合以下情形时:











Changes to the drug substance synthesis result in new impurities


or increased acceptance criteria for existing impurities;










原料药合成变更,导致产生新杂质或已有杂质可接受标准增加











Changes in the formulation, composition or manufacturing process


result


in


new


degradation


products


or


increased


acceptance


criteria


for


existing


degradation products;










配方变更、


组分变更或生产工艺变更,


导致 产生新的降解产物或已有降解


产物可接受标准增加











Changes


in


indication


or


dosing


regimen


are


made


which


significantly affect the acceptable cancer risk level.










指征变更或给药方案变更,导致可 接受癌症风险水平受到重大影响



Assessment


of


the


mutagenic


potential


of


impurities


as


described


in


this


guideline


is not intended for the following types of drug substances and drug products:


biological/biotechnological,


peptide,


oligonucleotide,


radiopharmaceutical,



fermentation products, herbal products, and crude products of animal or plant


origin.


本指南中描述的杂质潜在诱变性评估不适用于 以下类型的原料药和制剂:生物


/


生物技术制

< br>品、肽类、寡核苷酸、放射药物、发酵产品、草药制品和动物或植物来源的粗品。



This guideline does not apply to drug substances and drug products intended for


advanced


cancer


indications


as


defined


in


the


scope


of


ICH


S9


(Ref.


4).


Additionally,


there may be some cases where a drug substance intended for other indications is


itself


genotoxic


at


therapeutic


concentrations


and


may


be


expected


to


be


associated


with


an


increased


cancer


risk.


Exposure


to


a


mutagenic


impurity


in


these


cases


would


not


significantly


add


to


the


cancer


risk


of


the


drug


substance.


Therefore,


impurities could be controlled at acceptable levels for non- mutagenic impurities.



本指南不适用于


ICH


S9


(参考文献


4


)中所定义的晚期癌症指征用原料 药和制剂。另外,可


能会有些情况下,


制剂用于其它治疗,


而其自己本身在治疗浓度下就具有基因毒性,


已知其


会使癌症风险增加。


这些情况下,


暴露在具有诱变性的 杂质下,


不会显著增加原料药的癌症


风险。因此,杂质可以被控 制在非诱变性杂质的可接受水平。



Assessment


of


the


mutagenic


potential


of


impurities


as


described


in


this


guideline


is


not


intended


for


excipients


used


in


existing


marketed


products,


flavoring


agents


,


colorants,


and


perfumes.


Application


of


this


guideline


to


leachables


associated


with


drug product packaging is not intended, but the safety risk assessment principles


outlined


in


this


guideline


for


limiting


potential


carcinogenic


risk


can


be


used


if


warranted. The safety risk assessment principles of this guideline can be used if


warranted for impurities in excipients that are used for the first time in a drug


product and are chemically synthesized.



在本指南中所描述的对杂质潜在诱 变性的评估不适用于已上市药物中使用的辅料、调味剂、


着色剂和香料。


本指南不适用于药物包材中的可浸出杂质,


但指南中限制潜在致癌风险的安


全风险评估原则在一定情况下是可以使用的。


如果辅料是首次用于药 物中,


且是化学合成的,


则本指南的安全风险评估原则可以适用 于辅料中的杂质。



3. GENERAL


PRINCIPLES



通用原则




The focus of this guideline is on DNA reactive substances that have a potential to


directly cause DNA damage when present at low levels leading to mutations and


therefore,


potentially


causing


cancer.


This


type


of


mutagenic


carcinogen


is


usually


detected in a bacterial reverse mutation (mutagenicity) assay. Other types of


genotoxicants


that


are


non-mutagenic


typically


have


threshold


mechanisms


and


usually do not pose carcinogenic risk in


humans


at the level


ordinarily


present as


impurities. Therefore to limit a possible human cancer risk associated with the


exposure to potentially mutagenic impurities, the bacterial mutagenicity assay is


used to assess the mutagenic potential and the need for controls. Structure-based


assessments are useful for predicting bacterial mutagenicity outcomes based upon


the


established


knowledge.


There


are


a


variety


of


approaches


to


conduct


this


evaluation including a review of the available literature, and/or computational


toxicology assessment.


< p>
本指南关注的焦点为可与


DNA


反应的物质,这些 物质在较低水平时也可能会直接引起


DNA


损伤,导致


DNA


诱变,从而引发癌症。这类诱变性致癌作用常被细菌逆式突变(诱 变)含量


检出。


其它类型不具有典型诱变性的基因毒性物质则有 阈值进行控制,


一般以常规水平杂质


出现时对人类不具有致癌风 险。


因此,


为了限制暴露于潜在诱变性杂质可能带来的人类癌症


风险,


我们使用细菌诱变含量来评估诱变可能性及控制的必要性 。


基于结构进行的评估有助


于根据已有的知识来预测细菌诱变性 测试结果。


有很多方法可以用于实施该评估,


包括对可


获得的文献资料进行审核,和


/


或采用计算方式 进行毒性评估。



A Threshold of Toxicological Concern (TTC) concept was developed to define an


acceptable


intake


for


any


unstudied


chemical


that


poses


a


negligible


risk


of


carcinogenicity


or


other


toxic


effects.


The


methods


upon


which


the


TTC


is


based


are


generally considered to be very conservative since they involve a simple linear


extrapolation


from


the


dose


giving


a


50%


tumor


incidence


(TD50)


to


a


1


in


106incidence,


using TD50


data for the most sensitive species and most sensitive site of tumor


induction. For application of a TTC in the assessment of acceptable limits of


mutagenic impurities in drug substances and drug products, a value of 1.5


μ


g/day


corresponding


to


a


theoretical


10-5


excess


lifetime


risk


of


cancer,


can


be



justified. Some structural groups were identified to be of such high potency that


intakes even below the TTC would theoretically be associated with a potential for


a significant carcinogenic risk. This group of high potency mutagenic carcinogens


referred to as the “cohort of concern”, co


mprises aflatoxin-like-, N-nitroso-,


and alkyl-azoxy compounds.


< /p>


已经建立了


TTC


概念,


用于界定所有未经研究,


但具有可忽略的致癌风险或其它毒性效果的

< p>
化学品的可接受摄入量。


基于


TTC


的方法一般被认为是非常保守的,


因为它们牵涉到从给定


50%


肿瘤发生率(


TD50< /p>


)简单线性外推到十万分之一发生率,且采用的数据是来自于最敏


感物种和最敏感肿瘤部位的


TD50


数据。在使用


TTC


评估原料药和制剂中诱变性杂质的可接


爱标准 时,可以采用


1.5


μ


g/

< p>
天对应于十万分之一生命时长患癌风险。有些结构基团被识别


为具有较高的 效价,


因此即使摄入量低于


TTC


水平 ,


从理论上来说仍会导致可能的显著癌症


风险。这类具有较高效 价的基团被称为“关注队列”,包括黄曲霉素类、


N-


亚硝基化 合物,


以及烷基


-


氧化偶氮基化合物。



During


clinical


development,


it


is


expected


that


control


strategies


and


approaches


will be less developed in earlier phases where overall development experience is


limited.


This


guideline


bases


acceptable


intakes


for


mutagenic


impurities


on


established


risk


assessment


strategies.


Acceptable


risk


during


the


early


development phase is set at a theoretically calculated level of approximately one


additional cancer per million. For later stages in development and for marketed


products, acceptable increased cancer risk is set at a theoretically calculated


level of approximately one in one hundred thousand. These risk levels represent a


small


theoretical


increase


in


risk


when


compared


to


human


overall


lifetime


incidence


of developing any type of cancer, which is greater than 1 in 3.



在临床研 发期间,


如果整体研发经验有限,


在早期临床阶段对控制策略和 控制方法的要求会


较低。


本指南是在已建立的风险评估策略的基 础上,


制订诱变性杂质的可接受摄入量。


在早

< br>期研发阶段,


可接受风险是建立在患癌率约为百万分之一的理论计算水平上的。< /p>


在研发后期


及上市后,


可接受癌症增加风 险是建立在患癌率约为十万分之一的理论计算水平上的。


相较



于人类整个生命周期罹患各类癌症的发生率


(大于三分之一)< /p>



这两个不同的风险水平在理


论上风险稍 有增加。



It


is


noted


that


established


cancer


risk


assessments


are


based


on


lifetime


exposures.


Less-Than-Lifetime (LTL) exposures both during development and marketing can have


higher


acceptable


intakes


of


impurities


and


still


maintain


comparable


risk


levels.



已注意到所建立的患 癌风险评估是根据生命周期内暴露情形的。


在研发期间和上市期间低于

< br>生命周期(


LTL


)暴露都可能允许摄入更多杂质,仍保 留一定的风险水平。



The use of a numerical cancer risk value (1 in 100,000) and its translation into


risk-based


doses


(TTC)


is


a


highly


hypothetical


concept


that


should


not


be


regarded


as a realistic indication of the actual risk.



使用量化患癌风险值(十万分之一),并将其转化 为根据风险计算的剂量(


TTC


值)是一种

高度假想的概念,不应作为真实风险的一种实际指标。



Nevertheless,


the


TTC


concept


provides


an


estimate


of


safe


exposures


for


any


mutagenic compound.


< br>不管怎样,


TTC


概念提供了对诱变性化合物下安全暴露 的一种估计方法。



However, exceeding the TTC is not necessarily associated with an increased cancer


risk


given


the


conservative


assumptions


employed


in


the


derivation


of


the


TTC


value.



但是,假出在


TTC


值计算时采用了保守假设,超出


TTC< /p>


值并不一定会伴随患癌风险增加。



The


most


likely


increase


in


cancer


incidence


is


actually


much


less


than


1


in


100,000.


In addition, in cases where a mutagenic compound is a non-carcinogen in a rodent


bioassay,


there


would


be


no


predicted


increase


in


cancer


risk.


Based


on


all


the


above


considerations, any exposure to an impurity that is later identified as a mutagen


is not necessarily associated with an increased cancer risk for patients already


exposed to the impurity. A risk assessment would determine whether any further


actions would be taken.



大多数患癌可能性实际远低于十万分之一,


另外,


如果有一个诱变性化合物在啮齿动物生物


含量中显示为非诱变性,

则预测其致癌风险不会增加。


基于上述这些原因,


所有暴露 在之后



鉴定为诱变性杂质并不一定伴随已暴露于该杂质的患者 癌症风险增加。


应进行风险评估来决


定是否需要采取进一步行动 。



Where


a


potential


risk


has


been


identified


for


an


impurity,


an


appropriate


control


strategy leveraging process understanding and/or analytical controls should be


developed


to


ensure


that


the


mutagenic


impurity


is


at


or


below


the


acceptable


cancer


risk level.



如果一个杂 质被鉴定为具有潜在风险,则需要采用一个适当的控制策略来平衡工艺知识和


/


或分析控制,以保证诱变性杂质等于或低于可接受的癌症风险水平。



There may be cases when an impurity is also a metabolite of the drug substance. In


such cases the risk assessment that addresses mutagenicity of the metabolite can


qualify the impurity.



有时一种杂质可能也是药品的一种代谢产物,


这时,


对代谢产物的诱变性风险评估可以用于


支持该杂质的质量水平。



4. CONSIDERATIONS


FOR


MARKETED


PRODUCTS


已上市药品要考虑的问题



This guideline is not intended to be applied retrospectively (i.e., to products


marketed


prior


to


adoption


of


this


guideline).


However,


some


types


of


post-approval


changes warrant a reassessment of safety relative to mutagenic impurities. This


section applies to these post-approval changes for products marketed prior to, or


after,


the


adoption


of


this


guideline.


Section


8.5


(Lifecycle


Management)


contains


additional


recommendations


for


products


marketed


after


adoption


of


this


guideline.


< /p>


本指南无意回顾性地应用于在指南采纳前已上市的药物。


但是,< /p>


有些类型的批准后变更需要


对有关的诱变性杂质安全性重新进行评 估。


本部分适用于在指南被采纳前后上市药品的该类


批准后的变 更。第


8.5


(生命周期管理)包括了对采纳本指南后已上市药 品的其它建议。



4.1 Post-Approval Changes to the Drug Substance Chemistry, Manufacturing, and


Controls


上市后变更


---


原料药研发、生产和控制


Post-approval submissions involving the drug substance chemistry, manufacturing,


and controls should include an evaluation of the potential risk impact associated



with


mutagenic


impurities


from


changes


to


the


route


of


synthesis,


reagents,


solvents,


or


process


conditions


after


the


starting


material.


Specifically,


changes


should


be


evaluated to determine if the changes result in any new mutagenic impurities or


higher


acceptance


criteria


for


existing


mutagenic


impurities.


Reevaluation


of


impurities not impacted by changes is not recommended. For example, when only a


portion


of


the


manufacturing


process


is


changed,


the


assessment


of


risk


from


mutagenic impurities should be limited to whether any new mutagenic impurities


result


from


the


change,


whether


any


mutagenic


impurities


formed


during


the


affected


step


are


increased,


and


whether


any


known


mutagenic


impurities


from


up-stream


steps


are


increased.


Regulatory


submissions


associated


with


such


changes


should


describe


the


assessment


as


outlined


in


Section


9.2.


Changing


the


site


of


manufacture


of


drug


substance,


intermediates,


or


starting


materials


or


changing


raw


materials


supplier


will not require a reassessment of mutagenic impurity risk.



批准后 申报涉及原料药的研发、


生产和控制应包括起始物料后的合成路线、

试剂、


溶剂或工


艺条件变更时,


诱 变性杂质对潜在风险影响的评估。


特别是,


变更评估要确定其是 否会导致


任何新的诱变性杂质或已知诱变性杂质会有更高的可接受标准。


不建议对不受变更影响的杂


质重新进行评估。


例如,< /p>


如果只有一部分生产工艺发生变更,


则诱变性杂质的风险评估应局


限于该变更是否会产生新的诱变性杂质、


在受影响的步骤中是否 有诱变性杂质含升高,


以及


上游步骤中的已知诱变性杂质是否升 高。


该变更发生时提交的法规申报资料应描述


9.2

< p>
中所


列的评估。


对原料药、


中间体或起始物料的生产场所的变更,


或变更原料供应商则不需要对

< br>诱变性杂质风险重新进行评估。



When a new drug substance supplier is proposed, evidence that the drug substance


produced by this supplier using the same route of synthesis as an existing drug


product


marketed


in


the


assessor’s


region


is


considered


to


be


sufficient


evidence


of


acceptable


risk/benefit


regarding


mutagenic


impurities


and


an


assessment


per


this


guideline is not required. If this is not the case, then an assessment per this


guideline is expected.




如果拟提交一 个新的原料药供应商,


如有证据证明该供应商生产的原料药采用了与审评区域

< p>
内已上市制剂中所用的原料药具有相同的合成路线,则足以说明关于诱变性杂质其风险


/



益是可以接受的,


不需 要根据本指南进行评估。


如果不同这样,


则需要根据本指南进行 评估。



4.2


Post- Approval


Changes


to


the


Drug


Product


Chemistry,


Manufacturing,


and


Controls


上市后变 更


---


制剂研发、生产和控制



Post-approval


submissions


involving


the


drug


product


(e.g.,


change


in


composition,


manufacturing process, dosage form) should include an evaluation of the potential


risk associated with any new mutagenic degradation products or higher acceptance


criteria


for


existing


mutagenic


degradation


products.


If


appropriate,


the


regulatory submission would include an updated control strategy. Reevaluation of


the drug substance associated with drug products is not recommended or expected


provided


there


are


no


changes


to


the


drug


substance.


Changing


the


site


of


manufacture


of drug product will not require a reassessment of mutagenic impurity risk.



上市后申报如果涉及制剂(例 如、成分、生产工艺、剂型),则应包括对所有新的诱变性降


解产物或已有诱变性降解产 物更高的可接受标准进行评估。


适当时,


法规申报资料应包括对


控制策略的更新。


如果原料药并没有发生变更,


则不建议,


也不期望对制剂相关的原料药重


新进行评估 ,制剂生产场所变更不需要对诱变性杂质风险重新进行评估。



4.3 Changes to the Clinical Use of Marketed Products


上市后药品临床使用变更



Changes to the clinical use of marketed products that can warrant a reevaluation


of the mutagenic impurity limits include a significant increase in clinical dose,


an


increase


in


duration


of


use


(in


particular


when


a


mutagenic


impurity


was


controlled


above


the


lifetime


acceptable


intake


for


a


previous


indication


that


may


no


longer


be


appropriate


for


the


longer


treatment


duration


associated


with


the


new


indication), or for a change in indication from a serious or life threatening


condition


where


higher


acceptable


intakes


were


justified


(Section


7.5)


to


an


indication for a less serious condition where the existing impurity acceptable


intakes may no longer be appropriate. Changes to the clinical use of marketed


products associated with new routes of administration or expansion into patient



populations


that


include


pregnant


women


and/or


pediatrics


will


not


warrant


a


reevaluation, assuming no increases in daily dose or duration of treatment.



已上市药品的临床应用变更拒收情节包括,


变更所引起的对诱变杂质 限度的重新评估中会包


括临床使用剂量的显著增加、


用药时长的 增加


(特别是当根据之前的指征,


将诱变性杂质控


制在超出生命全程使用时可接受摄入量时,


可能采用新的指征,


其原定摄入量已不再适用于


更长的治疗时长。



或者是指征变更是从已论述的在病情较严重或危及生命的病患状态下采


用较高可接受摄入量的情况,


变成不那么严重的病患情况,


原 有的杂质可接受摄入量可能不


再适当了。如果已上市药品的临床应用变更包涵有使用新的 给药途径,或扩大使用患者群,


从而包括孕妇和


/


或小儿,假定日剂量或用药时长不增加,则无法保证重新评估符合要求。



4.4 Other Considerations for Marketed Products


已上市药物的其它需考虑问题



Application of this guideline may be warranted to marketed products if there is


specific cause for concern. The existence of impurity structural alerts alone is


considered


insufficient


to


trigger


follow-up


measures,


unless


it


is


a


structure


in


the cohort of concern (Section 3). However a specific cause for concern would be


new


relevant


impurity


hazard


data


(classified


as


Class


1


or


2,


Section


6)


generated


after


the


overall


control


strategy


and


specifications


for


market


authorization


were


established.


This


new


relevant


impurity


hazard


data


should


be


derived


from


high-quality


scientific


studies


consistent


with


relevant


regulatory


testing


guidelines, with data records or reports readily available. Similarly, a newly


discovered impurity that is a known Class 1 or Class 2 mutagen that is present in


a marketed product could also be a cause for concern. In both of these cases when


the


applicant


becomes


aware


of


this


new


information,


an


evaluation


per


this


guideline


should be conducted.



本指南在某些特殊原因考虑时可以适用于已上市的药品。


仅凭杂质存在警示结构 是无法启动


后续措施的,除非该结构具有队列方面的担忧


(第< /p>


3


部分)。所谓的一种特殊顾虑原因可以


是在上市产品已建立其总体控制策略和质量标准后所获得的新的相关杂质危害数据


(分类 为



1


或和


2


类,



6


部分 )



这些新的相关杂质危害性数据所采用的研究方法应具有高质 量


科学性,且与相关的法规测试指南相一致,其数据记录或报告应易于获得。

< p>
类似地,在已上



市药品中发现一个新的杂质,< /p>


且被确知属于第


1


类或第


2


类诱变性,


则也属于一种特殊顾虑

< br>原因。上述两种情形下,一旦申报人知晓这些新的信息,则需要实施本指南所要求的评估。



5. DRUG


SUBSTANCE AND


DRUG


PRODUCT


IMPURITY


ASSESSMENT


原料药和制剂杂质评




Actual and potential impurities that are likely to arise during the synthesis and


storage


of


a


new


drug


substance,


and


during


manufacturing


and


storage


of


a


new


drug


product should be assessed.



实际存在和可能存在的杂质是可能在新原料药合成和存贮过程、


生产过程中生成。


对新制剂


的存贮条件应进行评估。

< p>


The impurity assessment is a two-stage process:



杂质评估可以分为两个阶段:











Actual impurities that have been identified should be considered


for their mutagenic potential.











已被鉴定的实际存在的杂质应考虑其潜在诱变性











An assessment of potential impurities likely to be present in the


final


drug


substance


is


carried


out


to


determine


if


further


evaluation


of


their


mutagenic potential is required.











对可能存在于原料药中的潜在杂质 进行评估,


以确定是否需要对其潜在诱


变性进行进一步评估



The


steps


as


applied


to


synthetic


impurities


and


degradation


products


are


described


in Sections 5.1 and 5.2, respectively.



适用于合成 杂质和降解产物的方法分别在第


5.1



5.2


部分进行了描述。



5.1 Synthetic Impurities



合成杂质



Actual impurities include those observed in the drug substance above the ICH Q3A


reporting thresholds. Identification of actual impurities is expected when the


levels


exceed


the


identification


thresholds


outlined


by


ICH


Q3A.


It


is


acknowledged



that


some


impurities


below


the


identification


threshold


may


also


have


been


identified.



实际杂质包括原料药中超出


ICH


Q 3A


报告阈的杂质。如果杂质水平超过了


ICH


Q3A


中所述的


鉴别阈,则需要进行鉴别。有些低于 鉴别阈的杂质可能也是经过鉴别的。



Potential


impurities


in


the


drug


substance


can


include


starting


materials,


reagents


and intermediates in


the route of synthesis from the starting material to the drug


substance.



原料药中潜在 杂质可以包括起始物料、试剂和从起始物料到原料药合成路线中的中间体,



The risk of carryover into the drug substance should be assessed for identified


impurities


that


are


present


in


starting


materials


and


intermediates,


and


impurities


that


are


reasonably


expected


by-products


in


the


route


of


synthesis


from


the


starting


material


to


the


drug


substance.


As


the


risk


of


carryover


may


be


negligible


for


some


impurities (e.g., those impurities in early synthetic steps of long routes of


synthesis), a risk-based justification could be provided for the point in the


synthesis after which these types of impurities should be evaluated for mutagenic


potential.



应评估起始物 料和中间体中的杂质,


以及从起始物料到原料药的合成路线中会生成的副产物

< p>
被带入原料药的风险。


由于有些杂质被带入原料药的风险可以忽略


(例如,


很长的合成路线


中较早的合成步骤中的 杂质),可以提交对这些杂质在合成路线某一点时基于风险的论述。


在合成路线该点之后 ,此类杂质需要评估其诱变可能性。



For


starting


materials


that


are


introduced


late


in


the


synthesis


of


the


drug


substance


(and


where


the


synthetic


route


of


the


starting


material


is


known)


the


final


steps


of


the


starting


material


synthesis


should


be


evaluated


for


potential


mutagenic


impurities.



对于在原料 药合成路线后期才引入的起始物料


(以及如果已知起始物料的合成路线)



需要


评估起始物料合成的最终步骤中的潜在诱变性杂 质。




Actual


impurities


where


the


structures


are


known


and


potential


impurities


as


defined


above should be evaluated for mutagenic potential as described in Section 6.



已知其结 构的实际杂质和如上所述的潜在杂质应按第


6


部分要求评估其潜 在诱变性。



5.2 Degradation Products


降解产物



Actual


drug


substance


degradation


products


include


those


observed


above


the


ICH


Q3A


reporting


threshold


during


storage


of


the


drug


substance


in


the


proposed


long-term


storage


conditions


and


primary


and


secondary


packaging.


Actual


degradation


products


in the drug product include those observed above the ICH Q3B reporting threshold


during


storage


of


the


drug


product


in


the


proposed


long-term


storage


conditions


and


primary


and


secondary


packaging,


and


also


include


those


impurities


that


arise


during


the


manufacture


of


the


drug


product.


Identification


of


actual


degradation


products


is expected when the levels exceed the identification thresholds outlined by ICH


Q3A/Q3B.


It


is


acknowledged


that


some


degradation


products


below


the


identification


threshold may also have been identified.



原料药实际降解产物包括原料药在内 包装和外包装内,


在拟定的长期存贮条件下原料药存贮


期间观察 到的高于


ICH


Q3A


报告阈值的物 质。


制剂中实际降解产物包括制剂在内包装和外包


装内,在拟定 的长期存贮条件下原料药存贮期间观察到的高于


ICH


Q3B


报告阈值的物质,还


包括在制剂生产过程中产生的那些杂质。< /p>


如果降解产物的含量水平超过


ICH


Q 3A/Q3B


的鉴别


阈,则应进行鉴别。有些低于鉴别阈值的降 解产物可能也是经过鉴别的。



Potential


degradation


products


in


the


drug


substance


and


drug


product


are


those


that


may be reasonably expected to form during long term storage conditions. Potential


degradation products include those that form above the ICH Q3A/B identification


threshold during accelerated stability studies


(e.g., 40°C/75% relative humidity


for


6


months)


and


confirmatory


photo-stability


studies


as


described


in


ICH


Q1B


(Ref.


5),


but


are


yet


to


be


confirmed


in


the


drug


substance


or


drug


product


under


long-term


storage conditions in the primary packaging.



原料 药和制剂中潜在的降解产物是指经过合理推测,在长期存贮条件下可能会形成的物质。


潜 在降解产物包括在加速稳定性试验中(例如




40°C/75%下


6


个月)和


ICH


Q1B(


参考文




5)


光照稳定性试验中形成的超出

< p>
ICH Q3A/B


的鉴别限,但在原料药和制剂内包装长期存

< p>
贮条件下尚未确认的物质。



Knowledge of relevant degradation pathways can be used to help guide decisions on


the selection of potential degradation products to be evaluated for mutagenicity


e.g., from degradation chemistry principles, relevant stress testing studies, and


development stability studies.



相关降解途径的知识有助于指导选择性地评 估潜在降解产物的诱变性,


例如,


从降解化学原


理、相关强降解试验和研发稳定性研究。



Actual and potential degradation products likely to be present in the final drug


substance or drug product and where the structure is known should


be evaluated


for


mutagenic potential as described in Section 6.



实际存在 和可能存在于最终原料药或制剂中的降解产物只要知道结构,


均应根据第


6


部分要


求评估其诱变可能性。



5.3 Considerations for Clinical Development


临床研发中要考虑的问题



It


is


expected


that


the


impurity


assessment


described


in


Sections


5.1


and


5.2


applies


to


products


in


clinical


development.


However,


it


is


acknowledged


that


the


available


information is limited. For example, information from long term stability studies


and photo-stability studies may not be available during clinical development and


thus information on potential degradation products may be limited. Additionally,


the


thresholds


outlined


in


ICH


Q3A/B


do


not


apply


to


products


in


clinical


development


and consequently fewer impurities will be identified.



要求在临床阶段应用第


5.1


< p>
5.2


部分对杂质进行评估。


但是,


众所周知可能获得的信息会


比较有限。


例如,


在临床阶段可能还没有长期稳定性研究和光照稳定性试验数据,


因此关 于


潜在降解杂质的资料可能比较有限。另外,在


ICH


Q3A/B


中列出的阈值不适用于临床阶段的


药品,因此被鉴别出的杂质会很少。



6. HAZARD


ASSESSMENT


ELEMENTS


危害性评估要素




Hazard assessment involves an initial analysis of actual and potential impurities


by conducting database and literature searches for carcinogenicity and bacterial


mutagenicity data in order to classify them as Class 1, 2, or 5 according to Table


1.


If


data


for


such


a


classification


are


not


available,


an


assessment


of


Structure-Activity


Relationships


(SAR)


that


focuses


on


bacterial


mutagenicity


predictions


should


be


performed.


This


could


lead


to


a


classification


into


Class


3,


4, or 5.



危害性分析会涉及采用数据库和诱变和细菌诱变数据文献 检索启动对实际和可能杂质的分


析,以根据表


1


将其分类为第


1


类、



2


类或第


5


类。如果 无法获得这样的分类数据,


则应


进行结构


-


活性关系(


SAR


)评估,该评估 应着重关注细菌诱变性预期。


这时可能会使得该杂


质被分入第< /p>


3


类、第


4


类或 第


5


类。



Table 1: Impurities Classification with Respect to Mutagenic and Carcinogenic


Potential and Resulting Control Actions



Class


Definition


Proposed action for control (details in


Section 7 and 8)


1


Known mutagenic carcinogens


Control at or below compound-specific


acceptable limit


2


Known


mutagens


with


unknown


Control at or below acceptable limits


carcinogenic


(bacterial


positive*,


potential


(appropriate TTC)


mutagenicity


no


rodent


carcinogenicity data)


3


Alerting structure, unrelated


Control at or below acceptable limits


to the structure of the drug


(appropriate TTC) or conduct bacterial


substance:


no


mutagenicity


mutagenicity assay:


data


If non-mutagenic = Class 5


If mutagenic = Class 2


4


Alerting


structure,


same


alert


Treat as non-mutagenic impurity



in


drug


substance


or


compounds


related to the drug substance


(e.g., process intermediates)


which


have


been


tested


and


are


non-mutagenic


5


No


structural


alerts,


or


Treat as non-mutagenic impurity


alerting


structure


with


sufficient


data


to


demonstrate


lack


of


mutagenicity


or


carcinogenicity


*Or


other


relevant


positive


mutagenicity


data


indicative


of


DNA-reactivity


related


induction of gene mutations (e.g., positive findings in


in vivo


gene mutation


studies)





1


:根据诱变性和致癌性及其控制措施对杂质分类



分类



1



2



定义



已知诱变致癌性



已知具有诱变性,致 癌效应未知


(细菌诱变呈阳性


*



无啮齿动物


致癌数据)



3



警示结构,与原料药结构无关,< /p>


无诱变性数据



控制不高于可接受限度( 适当的


TTC


)或检


测细菌诱变含量:



如果非诱变性



=



5




如果具有诱变性



=



2




4



警示结构,与原料药或有关物质< /p>


有相同警示


(例如,


工艺中间体)



经测试为无诱变性



5



无警示结构,或警示结果具有充< /p>


与非诱变性杂质同等对待



与非诱变性杂质同等对待



拟定控制措 施(详见第


7



8

部分)



控制不高于化合物可接受限度



控制不 高于可接受限度(适当的


TTC





分的数据证明其不具备诱变性和


致癌性



*


或其它相关阳性诱变数据,说明与诱导基因变性的

< p>
DNA


反应活性(例如,体内基因诱变研


究显示阳 性)



A


computational


toxicology


assessment


should


be


performed


using


(Q)SAR


methodologies


that


predict


the


outcome


of


a


bacterial


mutagenicity


assay


(Ref.


6).


Two (Q)SAR prediction methodologies that complement each other should be applied.


One methodology should be expert rule- based and the second methodology should be


statistical-based. (Q)SAR models utilizing these prediction methodologies should


follow


the


general


validation


principles


set


forth


by


the


Organisation


for


Economic


Co-operation and Development (OECD).



应采用(


Q



SAR


方法进行计 算学毒性评估,预测细菌诱变含量(参考文献


6


)的结果。要使


用两个相互补充的(


Q



SAR


预测方法。一个方法应是依据专家规则的,另一个方法则应该


是统计方式的。


(Q)SAR


模式采用的这些预 测方法应服从


OECD


制订的通用验证原则。

< br>


The


absence


of


structural


alerts


from


two


complementary


(Q)SAR


methodologies


(expert


rule-based and statistical) is sufficient to conclude that the impurity is of no


mutagenic concern, and no further testing is recommended (Class 5 in Table 1).



两个互补的(


Q



SAR


方法(专家规则和统计学)如果没有发现结 构警示,则足以得出结论


该杂质没有诱变可能,不需要做进一步的检测(表


1


中第


5


类)。

< p>


If


warranted,


the


outcome


of


any


computer


system-based


analysis


can


be


reviewed


with


the use of expert knowledge in order to provide additional supportive evidence on


relevance of any positive, negative, conflicting or inconclusive prediction and


provide a rationale to support the final conclusion.


如果可以得到保证的话,


所有基于计算机系统的分析均可以使用专家知识进行审核,


以对所


有阳性、


阴性、


相互矛盾或无法得出结论的预期之间的相关性提供额外的支持性证据,


从而


支持最终结论的合理性。




To follow up on a relevant structural alert (Class 3 in Table 1), either adequate


control


measures


could


be


applied


or


a


bacterial


mutagenicity


assay


with


the


impurity


alone


can


be


conducted.


An


appropriately


conducted


negative


bacterial


mutagenicity


assay


(Note


2)


would


overrule


any


structure-based


concern,


and


no


further


genotoxicity


assessments


would


be


recommended


(Note


1).


These


impurities


should


be


considered non-mutagenic (Class 5 in Table 1). A positive bacterial mutagenicity


result


would


warrant


further


hazard


assessment


and/or


control


measures


(Class


2


in


Table 1). For instance, when levels of the impurity cannot be controlled at an


appropriate


acceptable


limit,


it


is


recommended


that


the


impurity


be


tested


in


an


in


vivo


gene mutation assay in order to understand the relevance of the bacterial


mutagenicity assay result under


in vivo


conditions. The selection of other


in


vivo


genotoxicity


assays


should


be


scientifically


justified


based


on


knowledge


of


the mechanism of action of the impurity and expected target tissue exposure (Note


3).


In vivo


studies should be designed taking into consideration existing ICH


genotoxicity Guidelines. Results in the appropriate


in vivo


assay may support


setting compound specific impurity limits.



在对有关的警示结构


(表


1



3


类)


进行确认之后,


可以采用充分的控制措施 ,或者对该杂


质单独进行细菌诱变测试。如果所得的细菌诱变测试(注

< br>2


)结果为阴性,则可以推翻基于


结构的疑虑,这时不建 议进行进一步的基因毒性评估(注


1


)。这些杂质应被当作非诱 变性


杂质(表


1


中第

< br>5


类)。如果细菌诱变测试为阳性,则要进行进一步的危害性分析和


/


或采


取控制措施


(表


1


中第


2


类)



例如,


如果杂质的水平不能被控制在一个 适当的可接受水平,


则建议进行体内基因诱变测试,


以搞清楚在 体内环境下细菌诱变测试结果。


其它体内基因毒


性测试的选择也 应根据杂质的反应机理和预期标靶组织暴露(注


3


)的知识进行 科学论述。


体内研究的设计应考虑已有的


ICH


基因毒性指南。


恰当的体内测试结果可以用于支持设定特


定化合物杂质的限度。



An impurity


with


a structural alert


that


is shared (e.g., same structural alert


in


the same position and chemical environment) with the drug substance or related


compounds can be considered as non-mutagenic (Class 4 in Table 1) if the testing


of such material in the bacterial mutagenicity assay was negative.




如果一种杂质 具有与药用物质或相关化合物具有相似的警示结构


(例如,


在相 同位置和相同


化学环境下具有相同警示结构)



且该物料的细菌诱变测试为阴性,


则该杂质可以被认为是


非诱变性的(表


1



4


类)。



7. RISK


CHARACTERIZATION


风险定性



As a result of hazard assessment described in Section 6, each impurity will be


assigned


to


one


of


the


five


classes


in


Table


1.


For


impurities


belonging


in


Classes


1,


2,


and


3


the


principles


of


risk


characterization


used


to


derive


acceptable


intakes


are described in this section.



作为第


6


部分所述的危害性评估的结果,


每个杂质会按表


1


中分在


5


类中。

本部分描述的是


用于


1



2



3


类杂质计算可接 受摄入量的风险定性原则。



7.1 TTC-based Acceptable Intakes



根据


TTC


计算可接受摄入量



A


TTC-based


acceptable


intake


of


a


mutagenic


impurity


of


1.5


μ


g


per


person


per


day


is considered to be associated with a negligible risk (theoretical excess cancer


risk of <1 in 100,000 over a lifetime of exposure) and can in general be used for


most pharmaceuticals as a default to derive an acceptable limit for control. This


approach


would


usually


be


used


for


mutagenic


impurities


present


in


pharmaceuticals


for


long-term


treatment


(>


10


years)


and


where


no


carcinogenicity


data


are


available


(Classes 2 and 3).



根据


TTC

< br>计算可接受摄入量时,一个具有诱变性的杂质每天每人摄入


1.5


μ


g


时其风险被认


为是可以忽 略的


(终生暴露情况下理论的患癌风险小于十万分之一)



可以通用于大部分药


物,


作为默认的可接受 限度控制标准。


该方法一般用于长期治疗用药物中的诱变性杂质



>10


年),且没有致癌数据时(第


2


类和


3


类)。



7.2 Acceptable Intakes Based on Compound-Specific Risk Assessments


根据化合 物


特定风险评估计算的可接受摄入量



7.2.1 Mutagenic Impurities with Positive Carcinogenicity Data (Class 1 in Table


1)


具有阳性致癌数据的诱变杂质(表


1



1


类)




Compound-specific risk assessments to derive acceptable intakes should be applied


instead of the TTC-based acceptable intakes where sufficient carcinogenicity data


exist.


For


a


known


mutagenic


carcinogen,


a


compound-specific


acceptable


intake


can


be


calculated


based


on


carcinogenic


potency


and


linear


extrapolation


as


a


default


approach.


Alternatively,


other


established


risk


assessment


practices


such


as


those


used


by


international


regulatory


bodies


may


be


applied


either


to


calculate


acceptable


intakes


or


to


use


already


existing


values


published


by


regulatory


authorities (Note 4).



如果具备足够的基因致癌性数据,

则应采用对特定化合物进行风险评估的方式计算可接受摄


入量,

取代根据


TTC


所计算的可接受摄入量。

< br>对于已知具有突变致癌性的化合物,


可以根据


致癌可能性 和线性计算可接受摄入量,


这时默认采用线性外推法。


对应地,


其它已实施的风


险评估经验,例如,


被 国际法规实体采用的经验,


也可以用于计算可接受摄入量,


或采 用已


由法规当局公布的值(注


4


)。< /p>



Compound-specific calculations


for acceptable intakes can


be applied case-by-case


for impurities which are chemically similar to a known carcinogen compound class


(class- specific


acceptable


intakes)


provided


that


a


rationale


for


chemical


similarity and supporting data can be demonstrated (Note 5).



对特定化合物的可接受摄入量的计算方法可以根据实际 情况应用于与已知致癌化合物在化


学结构上类别较相似的杂质


( 按类别制订的可接受摄入量)



但前提是必须证明该杂质与已< /p>


知化合物化学结构相似性的合理性及具备支持性数据。



7.2.2 Mutagenic Impurities with Evidence for a Practical Threshold


有实际阈值


证据的诱变性杂质



The existence of mechanisms leading to a dose response that is non-linear or has


a practical threshold is increasingly recognized, not only for compounds that


interact with non-DNA targets but also for DNA-reactive compounds, whose effects


may be modulated by, for example, rapid detoxification before coming into contact


with


DNA,


or


by


effective


repair


of


induced


damage.


The


regulatory


approach


to


such


compounds can be based on the identification of a No- Observed Effect Level (NOEL)



and


use


of


uncertainty


factors


(ICH


Q3C(R5),


Ref.


7)


to


calculate


a


Permissible


Daily


Exposure (PDE) when data are available.



大家现在越来越认识到,


有一些机理说明对剂量的反应并非线性或实用阈值,


不仅仅是与非

< p>
DNA


靶标产生作用的化合物,也包括与


DNA< /p>


有活性反应的化合物,其影响可能会,例如,在



DNA


接触前其毒性即被快速清除,


或对产生的损伤进 行有效修复。


针对该类化合物的合规


方法可以是根据对无明显反 应水平(


NOEL


)的鉴别,


在可以获 得数据的情况下,使用不确定


性因子(


ICH Q3C



R5


)参考文献


7< /p>


)计算允许日暴露量(


PDE


)。



The


acceptable


intakes


derived


from


compound-specific


risk


assessments


(Section


7.2)


can be adjusted for shorter duration of use in the same proportions as defined in


the following sections (Section 7.3.1 and 7.3.2) or should be limited to not more


than 0.5%, whichever is lower. For example, if the compound specific acceptable


intake is 15


μ


g/day for lifetime exposure, the less than lifetime limits (Table


2)


can


be


increased


to


a


daily


intake


of


100


μ


g


(>


1-10


years


treatment


duration),


200


μ


g (> 1-12 months)


or 1200


μ


g (< 1


month). However, for a drug


with a maximum


daily dose of, for instance, 100 mg the acceptable daily intake for the < 1 month


duration would be limited to 0.5% (500


μ


g) rather than 1200


μ


g.



在短 期服用时,


特定化合物风险分析所获得的可接受服用量


(第


7.2


部分)


可以按以下部分


所指定的比例进行调整(第


7.3.1


< p>
7.3.2


部分),或限制不超过


0.1%


,取低者。例如,


如果一个特定化合物的可接受服用量为终生暴露期< /p>


15


μ


g/


天, 在短于终生时长暴露时的限


度(表


2


) 可以增加至


100


μ


g



>1-10


年治疗进长),


200


μ


g



>1-12


月)或


1200


μ


g



<1


个月)。但是 ,对于具有最大日服用剂量的药物,例如,


100mg


,则


<1


个月时长的可接受日


服用剂量应受限于


0.1%



500

μ


g


),而不是


1200


μ


g




7.3 Acceptable Intakes in Relation to LTL Exposure



LTL


暴露有关的可接受摄入




Standard risk assessments of known carcinogens assume that cancer risk increases


as a function of cumulative dose. Thus, cancer risk of a continuous low dose over


a lifetime would be equivalent to the cancer risk associated with an identical


cumulative exposure averaged over a shorter duration.



对已知致癌物的标准风险评估假定癌症风险随着给药量的累积而增加,


这样,


终生以低剂量


持续给药时癌症风险则与在短期内大量给药具有相同的累 积暴露平均值。



The TTC-based acceptable intake of 1.5


μ


g/day is considered to be protective for


a lifetime of daily exposure. To address LTL exposures to mutagenic impurities in


pharmaceuticals,


an


approach


is


applied


in


which


the


acceptable


cumulative


lifetime


dose (1.5


μ


g/day x 25,550 days = 38.3 mg) is uniformly distributed over the total


number of exposure days during LTL exposure. This would allow higher daily intake


of mutagenic impurities than would be the case for lifetime exposure and still


maintain comparable risk levels for daily and non-daily treatment regimens. Table


2


is


derived


from


the


above


concepts


and


illustrates


the


acceptable


intakes


for


LTL


to


lifetime


exposures


for


clinical


development


and


marketing.


In


the


case


of


intermittent


dosing,


the


acceptable


daily


intake


should


be


based


on


the


total


number


of dosing days instead of the time interval over which the doses were administered


and that number of dosing days should be related to the relevant duration category


in Table 2. For example, a drug administered once per week for 2 years (i.e., 104


dosing days) would have an acceptable intake per dose of 20


μ


g.



基于


TTC


计算的可接受日摄入量


1. 5


μ


g/


天被认为是在终生每日暴露情 况下可以受到保护的


量。


在说明药品中诱变性杂质的

< p>
LTL


暴露量时,


所采用的方法是假定可接受的累 积终生剂量



1.5


μ


g/



X25,550



=38.3mg



在终生摄入期间是均匀分 布在这些天数中的,


这样诱变性


杂质的日摄入量可以高于平均终 生日暴露量,


而其风险水平仍与每日或非每日治疗方案相持


平。



2


是从上述概念得到的数据,


其中写出了临床研发阶段和上市阶段终生暴露


LTL

< br>下可


接受摄入量数值。


如果给药是间歇性的,

< p>
则可接受日摄入量应根据给药总天数计算,


而不是


服用药物的总时间长度计算,给药天数与表


2


中相关时长分类有 关。例如,


2


年期间每周服


用一次的药 物(即


104


个服药天数),其可接受摄入剂量为每剂


20


μ


g


< p>


Table 2: Acceptable Intakes for an Individual Impurity



Duration


treatment


Total


Daily


120


20


10


of



1month


>1-12months


>1-10years


>10


years


to


lifetime


1.5



intake


(


μ


g/day)





2:< /p>


单个杂质的可接受摄入量



治疗期



日总摄入量



(


μ


g/



)




1




120



>1-12




20



>1-10




10



>10


年到终生



1.5





7.3.1 Clinical Development


临床研发



Using


this


LTL


concept,


acceptable


intakes


of


mutagenic


impurities


are


recommended


for limited treatment periods during clinical development of up to 1 month, 1 to


12


months


and


more


than


one


year


up


to


completion


of


Phase


3


clinical


trials


(Table


2). These adjusted acceptable intake values maintain a 10-6


risk level in early


clinical


development


when


benefit


has


not


yet


been


established


and


a


10-5risk


level


for later stages in development (Note 6).


采用


LTL


概念,诱变性杂质 的可接受摄入量在临床研究中的治疗期限最高为


1


个月、


1-12


个月及长于


1


年直到完成


3


期临床试验(表


2


)。对可接受摄入值的调节在其受益水平尚未


不可知时,保持早期临 床风险水平为百万分之一,后期临床为十万分之一。



An alternative approach


to the strict use


of an


adjusted acceptable


intake for


any


mutagenic impurity could be applied for Phase 1 clinical trials for dosing up to


14 days. For this approach, only impurities that are known mutagenic carcinogens


(Class 1) and known mutagens of unknown carcinogenic potential (Class 2), as well


as impurities in the cohort of concern chemical class, should be controlled (see


Section


8)


to


acceptable


limits


as


described


in


Section


7.


All


other


impurities


would


be treated as non- mutagenic impurities. This includes impurities which contain


structural


alerts


(Class


3),


which


alone


would


not


trigger


action


for


an


assessment


for this limited Phase 1 duration.



所有诱变性杂质经过 调整的可接受摄入量严格用法的替代方式可以应用于长达


14


天 的一期


临床试验阶段。采用该方法时,只有已知诱变性致癌(


1


类)杂质和致癌性未知的已知诱变


物(


2


类),以及被列入关注化学类别中的杂质要控制(参见第


8< /p>


部分)在第


7


部分的可接


受限度内。所有其它杂质可以作为非诱变性杂质对待,其中包括含有警示结构(


3


类)的杂


质。仅仅只是含有警示结构不需要在一期临床试验期 间进行评估。



7.3.2 Marketed Products


已上市药物



The treatment duration categories with acceptable intakes in Table 2 for marketed


products


are


intended


to


be


applied


to


anticipated


exposure


durations


for


the


great


majority


of


patients.


The


proposed


intakes


along


with


various


scenarios


for


applying


those intakes are described in Table 4, Note 7. In some cases, a subset of the


population of patients may extend treatment beyond the marketed drugs categorical


upper limit (e.g., treatment exceeding 10 years for an acceptable intake of 10


μ


g/day,


perhaps


receiving


15


years


of


treatment).


This


would


result


in


a


negligible


increase (in the example given, a fractional increase to 1.5/100,000) compared to


the overall calculated risk for the majority of patients treated for 10 years.


已上市药品的治疗时长分类与可接受摄入量在表


2


中列 中。


它可以用来预计绝大部分患者的


暴露时长。


所拟的摄入量与使用这些摄入量的不同情景在表


4


注< /p>


7


中已有说明。


在有些情况


下,患者中一部分人群可能会延长治疗时长,


超出上市药物分类的上限


(例如,可接受摄入


量为


10


μ


g/


天的药物治疗超出


10


年,可能会接受


15


年治疗)。与按绝 大部分患者治疗


10


年计算出的整体风险相比,


延长治疗时长导致的风险增加


(如上例,


增加比例为< /p>


1.5/100000



可以忽略。



7.4 Acceptable Intakes for Multiple Mutagenic Impurities



多个诱变性杂质可接受


摄入量



The


TTC-based


acceptable


intakes


should


be


applied


to


each


individual


impurity.


When


there are two Class 2 or Class 3 impurities, individual limits apply. When there


are three or more Class 2 or Class 3 impurities specified on the drug substance


specification, total mutagenic impurities should be limited as described in Table


3 for clinical development and marketed products.



根据


TTC< /p>


制订的可接受摄入量要用单独应用于各个杂质。


如果有两个


2


类或


3


类杂质,< /p>


则限


度是针对单个杂质的。


如果原料药质 量标准中有


3


个或更多


3


类或


3


类杂质,


临床研发和 已


上市药品中的总诱变性杂质应根据表


3


所列进行限制。



For combination products each active ingredient should be regulated separately.


对于复方药品,每个活性成分要分别规定。



Table 3: Acceptable Total Daily Intakes for Multiple Impurities



Duration


treatment


Total


intake


(


μ


g/day)






3:


多个杂质的可接受日总摄入量



治疗期



日总摄入量



(


μ


g/



)





Only specified Class 2 and 3 impurities on the drug substance specification are


included


in


the


calculation


of


the


total


limit.


However,


impurities


with


compound-specific or class-related acceptable intake limits (Class 1) should not


be


included


in


the


total


limits


of


Class


2


and


Class


3


impurities.


Also,


degradation


products


which


form


in


the


drug


product


would


be


controlled


individually


and


a


total


limit would not be applied.


在原料药质量标准中,


只有列出的


2


类 和


3


类杂质才会被包括在总限度计算中,


而特定化合


物或按可接受摄入限度分类(第


1


类)的杂质不应计入第


2


类和第


3


类杂质总限度。还有,


原料药中形成的降解产物要单独控制 ,不能计入总限度。



7.5 Exceptions and Flexibility in Approaches


方法特例和灵活性




1




120



>1-12




60



>1-10




30



>10


年到终生



5



Daily


120


60


30


of



1month


>1-12months


>1-10years


>10


years


to


lifetime


5



? Higher acceptable intakes may be justified when human exposure to the impurity


will


be


much


greater


from


other


sources


e.g.,


food,


or


endogenous


metabolism


(e.g.,


formaldehyde).


如果人们暴露于其它杂质其它来源,


如,


食品或内源 性代谢物


(例如甲醛)



的可能性非常


大,则可以考虑判定较高的可接受摄入量。



? Case-by-case exceptions to the use of the appropriate acceptable intake can be


justified


in


cases


of


severe


disease,


reduced


life


expectancy,


late


onset


but


chronic


disease, or with limited therapeutic alternatives.


使用适当的 可接受摄入量可以用于以下各案例外情况:


病情严重、


降低生命 期望、


发病迟但


长期疾病,或其它治疗方法有限的情况。



? Compounds from some structural classes of mutagens can display extremely high


carcinogenic potency (cohort of concern), i.e., aflatoxin-like-, N-nitroso-, and


alkyl-azoxy


structures.


If


these


compounds


are


found


as


impurities


in


pharmaceuticals,


acceptable


intakes


for


these


high-potency


carcinogens


would


likely


be significantly lower than the acceptable intakes defined in this guideline.


Although


the


principles


of


this


guideline


can


be


used,


a


case-by-case


approach


using


e.g., carcinogenicity data from closely related structures, if available, should


usually be developed to justify acceptable intakes for pharmaceutical development


and marketed products.


有些诱变结 构类别的化合物可能会显示出非常高的诱变性


(关注的队列),例如,黄曲霉毒


素类、


N-


亚硝基化合物、以及烷基

< p>
-


氧化偶氮结构。如果在药物的杂质中存在杂质是这样的

< br>化合物,


则这些高效价诱变物的可接受摄入量很可能要显著低于本指南中定义的可 接受摄入


量。尽管如果,也还是能使用本指南的原则,一般要研究一种针对各案采用,例 如,已有的


近似的相关结构的基因致癌数据,的方法来判定药品研发和上市药品中的可接 受摄入量。



The above risk approaches described in Section 7 are applicable to all routes of


administration and no corrections to acceptable intakes are generally warranted.


Exceptions to consider may include situations where data justify route- specific


concerns


that


should


be


evaluated


case-by-case.


These


approaches


are


also


applicable



to


all


patient


populations


based


upon


the


conservative


nature


of


the


risk


approaches


being applied.


在第


7


部分中所描述的上述风险方法可以应 用于所有摄入途径,不需要修正可接受摄入量。


对例外情况的考虑可能包括需要各案评价 的特定摄入途径数据判定。


由于所采用的风险方法


是较为保守的 ,因此这些方法也适用于所有患者人群,



8. CONTROL


控制



A control strategy is a planned set of controls, derived from current product and


process


understanding


that


assures


process


performance


and


product


quality


(ICH


Q10,


Ref. 8). A control strategy can include, but is not limited to, the following:


控制策略是指从现行产品和工艺知识中获得的,


保证工艺性能和产品质 量的一套有计划的控


制方法。一个控制策略可以包括,但不限于以下:

< br>










Controls


on


material


attributes


(including


raw


materials,


starting


materials, intermediates, reagents, solvents, primary packaging materials);










物料特性控制(包括原料、起始物料、中间体、试剂、溶剂、内包材)











Facility and equipment operating conditions;










设施和设备操作条件











Controls implicit in the design of the manufacturing process;










生产工艺设计中的控制内涵











In-process


controls


(including


in-process


tests


and


process


parameters);










中控(包括中控检测和工艺参数)











Controls


on


drug


substance


and


drug


product


(e.g.,


release


testing).










原料药和制剂控制(例如,放行检测)




When an impurity has been characterized as Classes 1, 2, or 3 in Table 1, it is


important


to


develop


a


control


strategy


that


assures


that


the


level


of


this


impurity


in the drug substance and drug product is below the acceptable limit. A thorough


knowledge


of


the


chemistry


associated


with


the


drug


substance


manufacturing


process,


and of the drug product manufacturing process, along with an understanding of the


overall


stability


of


the


drug


substance


and


drug


product


is


fundamental


to


developing


the


appropriate


controls.


Developing


a


strategy


to


control


mutagenic


impurities


in


the


drug


product


is


consistent


with


risk


management


processes


identified


in


ICH


Q9


(Ref.


9).


A


control


strategy


that


is


based


on


product


and


process


understanding


and


utilisation of risk management principles will lead to a combination of process


design and control and


appropriate analytical testing, which can also provide an


opportunity


to


shift


controls


upstream


and


minimize


the


need


for


end-product


testing.



如果一个杂质已根 据表


1


进行了定性分类为


1

< p>


2



3


类,则研究一种控制策略来保证该杂


质在原料药和制剂中存在的水平低于可接受 限度是很重要的。


在建立适当的控制策略时,



原料工生产工艺的化学方面的深入理解、


对制剂生产工艺的了解、


对原料药和制剂全面稳定


性的了解是很必要的。


建立 一种策略来控制原料药中的诱变性杂质是与


ICH


Q9


(参考文献


9



中定 义的风险管理过程相一致的。


控制策略应该是根据对产品和工艺的理解,


利用风险管理


原则进行综合的工艺设计和控制,


以及适 当的分析检测。


这也能提供一个机会来转移对上游


进行控制,并 将最终产品检测的必要性降至最小。



8.1 Control of Process Related Impurities


工艺相关杂质的控制



There are 4 potential approaches to development of a control strategy for drug


substance:



< p>
4


种方法可供选择用作原料药控制策略:



Option 1



1


种方法



Include


a


test


for


the


impurity


in


the


drug


substance


specification


with


an


acceptance


criterion


at


or


below


the


acceptable


limit


using


an


appropriate


analytical procedure.




在原料药质 量标准中加入杂质检测并制订质量标准,


标准不高于采用适当的分析方法时的可


接受限度。



For an Option 1 control approach, it is possible to apply periodic verification


testing per ICH Q6A (Ref. 10). Periodic verification testing is justified when it


can be shown that levels of the mutagenic impurity in the drug substance are less


than 30% of the acceptable limit for at least 6 consecutive pilot scale or 3


consecutive


production


scale


batches.


If


this


condition


is


not


fulfilled,


a


routine


test


in


the


drug


substance


specification


is


recommended.


See


Section


8.3


for


additional considerations.



根据


ICH


Q6A


(参考文献


< br>10


),方法


1


控制方式可以适 用定期检测。如果原料药中的诱变


性杂质在至少


6


个连续的中试批次或


3


个连续的生产批次中,


测得结果均低于可接受限度的


30%


,则可以 论述进行定期检测。如果不满足该条件,则建议对原料药进行常规检测。参见


8.3


中更多考虑因素。



Option 2



2


种方法



Include a test for the impurity in the specification for a raw material, starting


material


or


intermediate,


or


as


an


in-process


control,


with


an


acceptance


criterion


at or below the acceptable limit using an appropriate analytical procedure.



在原料、


起始物料或中间体的质量标准中包括对杂质的检测,


或作为中控检测,


同时制订可


接受标准,或采 用适当的分析方法,将杂质控制在可接受限度以下。



Option 3



3


种方法



Include a test for the impurity in the specification for a raw material, starting


material


or


intermediate,


or


as


an


in-process


control,


with


an


acceptance


criterion


above


the


acceptable


limit


of


the


impurity


in


the


drug


substance,


using


an


appropriate analytical procedure coupled with demonstrated understanding of fate


and


purge


and


associated


process


controls


that


assure


the


level


in


the


drug


substance


is below the


acceptable


limit without the need for any additional testing later


in


the process.




在原料、


起始物料或中间体的质量标 准中包括对杂质的检测,


或作为中控检测,


同时制订一


个高于原料药中可接受限度的质量标准,


采用适当的分析方法,


配合经过证明杂质致命知识,


杂质在后续工艺中被清除的知识,


并对后续工艺进行控制,


保证原料药中的该杂质残留水平


低于可接受限度,而不需要在后续工艺中再行检测。



This option can be justified when the level of the impurity in the drug substance


will


be


less


than


30%


of


the


acceptable


limit


by


review


of


data


from


laboratory


scale


experiments (spiking experiments are encouraged) and where necessary supported by


data from pilot scale or commercial scale batches. See Case Examples 1 and 2.


Alternative approaches can be used to justify Option 3.



当实验室级试验


(鼓励采用加样试验)


数据,


必要时可以采用 中试生产或商业批次数据加以


支持,显示原料药中杂质水平低于可接受限度的

< p>
30%


时,可以采用该方法。



Option 4



4


种方法



Understand


process


parameters


and


impact


on


residual


impurity


levels


(including


fate


and purge knowledge) with sufficient confidence that the level of the impurity in


the


drug


substance


will


be


below


the


acceptable


limit


such


that


no


analytical


testing


is recommended for this impurity. (i.e., the impurity does not need to be listed


on any specification).


< p>
对工艺参数和残留杂质水平


(包括致命性和清除知识)

影响有了解,


确信原料药中的杂质一


定会低于可接受限度, 此时,建议该杂质不需要进行分析测试


(例如,


不需要将杂质列 在任


何质量标准中)。



A control strategy that relies on process controls in lieu of analytical testing


can


be


appropriate


if


the


process


chemistry


and


process


parameters


that


impact


levels


of mutagenic impurities


are understood and the risk of an impurity residing in the


final


drug


substance


above


the


acceptable


limit


is


determined


to


be


negligible.


In


many cases justification of this control approach based on scientific principles


alone


is


sufficient.


Elements


of


a


scientific


risk


assessment


can


be


used


to


justify


an


option


4


approach.


The


risk


assessment


can


be


based


on


physicochemical


properties


and process factors that influence the fate and purge of an impurity including

-


-


-


-


-


-


-


-



本文更新与2021-02-11 15:11,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/637181.html

ICH M7(step4)基因毒性杂质评估和控制◆中英的相关文章