关键词不能为空

当前您在: 主页 > 英语 >

为什么用4到20毫安

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-02-06 10:17
tags:

-

2021年2月6日发(作者:guitarist)


工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信 号才能传输到几百米外的控制室或显示设备上。


这种将物理量转换成电信号的设备称为变 送器。工业上最广泛采用的是用


4~20mA


电流来传输模拟量 。







采用电流信号的原因是不容易受干扰。并且电流源内阻无穷大 ,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。上限



20mA


是因为防爆的要求:


20mA


的电流通断引起的火花能量不足以引燃瓦斯。下限没有取


0mA


的原因是为了能检测断线:正常工作时不会低



4mA


,当传输线因故障断路,环路电流降为


0


。常取


2mA


作为断线报警值。







电流型变送器将物理量转换成


4~20mA

电流输出,必然要有外电源为其供电。最典型的是变送器需要两根电源线,加上两根电流输出线,总


共要接


4


根线,称之为四线制变送器。当然,电 流输出可以与电源公用一根线(公用


VCC


或者


GND



,可节省一根线,称之为三线制变送器。







其实大家可能注意到,


< p>
4-20mA


电流本身就可以为变送器供电,如图


1C


所示。变送器在电路中相当于一个特殊的负载,特殊之处在于变送

< br>器的耗电电流在


4~20mA


之间根据传感器输出而变化 。显示仪表只需要串在电路中即可。这种变送器只需外接


2


根线 ,因而被称为两线制变送器。


工业电流环标准下限为


4mA


,因此只要在量程范围内,变送器至少有


4mA

供电。这使得两线制传感器的设计成为可能。






在工业应用中,

< br>测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。两者之间距离可能数十至数百米 。按一百米距离计


算,省去


2


根导线意 味着成本降低近百元!因此在应用中两线制传感器必然是首选。






2.


两线制变送器的结构与原理



两线制变送器的原理是利用了


4~20mA


信号为自身提供电能。


如果变送器自身耗电大于


4mA



那么将不可能输出下



4mA


值。因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于


3.5mA


。这是两线制变送器的设计根本原则之一。



从整


体结构上来看,两线制变送器由三大部分 组成:传感器、调理电路、两线制


V/I


变换器构成。传感器将 温度、压力等物理量转化为电参量,调理


电路将传感器输出的微弱或非线性的电信号进行 放大、调理、转化为线性的电压输出。两线制


V/I


变换电路根 据信号调理电路的输出控制总体耗


电电流;同时从环路上获得电压并稳压,供调理电路和 传感器使用。



除了


V/I

< p>
变换电路之外,电路中每个部分都有其自身的耗电电流,两线制变


送器的核 心设计思想是将所有的电流都包括在


V/I


变换的反馈环路内。 如图,采样电阻


Rs


串联在电路的低端,所有的电流都将通过< /p>


Rs


流回到电


源负极。从


Rs


上取到的反馈信号,包含了所有电路的耗电。在两线制变送器中,所有的电 路总功耗不能大于


3.5mA


,因此电路的低功耗成为主


要的设计难点。下面将逐一分析各个部分电路的原理与设计要点。







3.


两线制


V/I


变换器



V/I


变换器是一种可以用 电压信号控制输出电流的电路。两线制


V/I


变换器与一般


V/I


变换电路不同点在:电压信号不是直接


控制输出电流,而是控制整个电路自身耗电电流。同时,还要从电流环路上提取稳定的电压为调理电路和传感器 供电。附图是两线制


V/I


变换电


路的 基本原理图:



图中


OP1

< p>


Q1



R1

< p>


R2



Rs

< p>
构成了


V/I


变换器。分析负反馈过程:若


A


点因为某种原因高于


0V

< br>,则运放


OP1


输出升高,


Re


两端电压升高,通过


Re


的电流变大。 相当于整体耗电变大,通过采样电阻


Rs


的电流也变大,


B


点电压变低(负更多)


。结果是通过


R2



A


点电压拉下 来。反之,若


A


点因某种原因低于


0V


,也会被负反馈抬高回


0V


。总之,负 反馈的结果是运放


OP1


虚短,


A


点电压=


0V


。下面分析

< br>Vo


对总耗电的控制原理:



假 设调理电路输出电压为


Vo


,则流过


R 1


的电流



I1=Vo/R1


运放输入端不可能吸收电流,则


I1


全部流过


R2


,那么


B


点电




VB= -I1*R2 = -Vo*R2/R1



R1=R2


时 ,有


VB=-Vo


电源负和整个便送器电路之间只有


Rs



R2


两个电阻, 因此所有的电流都流过


Rs



R2



R2


上端是虚地(


0V




Rs


上端是


GND


。因此


R2

< p>


Rs


两端电压完全一样


,


都等于


VB


。相当于


Rs




R2


并联作为电流采样电阻。因此电路总电


流:



Is=Vo/(Rs//R2)


如果取


R2>>Rs



Is=Vo/Rs


因此,图


3


中取


Rs=100


欧,当调理电路输出


0.4~2V


的时候,总耗 电电流


4~20mA.


若不能满足


R 2>>Rs


也没关系,


Rs




R2


并联(


Rs// R2


)是个固定值,


Is


< p>
Vo


仍然是线性关系,误差比例系数在校准时可以消除。

< br>


除了电路正确以外,该


电路正常工作还需要

< p>
2


个条件:首先要自身耗电尽量小,省下的电流还要供给调理电路以及变送 器。其次要求运放能够单电源工作,即在没有负


电源情况下,


输 入端仍能够接受


0V


输入,


并能正常工 作。



LM358/324


是最常见也 是价格最低的单电源运放,


耗电


400uA/

< br>每运放,


基本可以接受。


单电源供电时,输入端从


-0.3V~Vcc-1.5V


范围内都能正常工作。如果换成


OP07


等精密放大器,因为输入不允许低至


0V


,在该电路中反而无法工


作。


< /p>


R5



U1


构成 基准源,产生


2.5V


稳定的基准电压。


LM385


是低成本的微功耗基准,


20uA


以上即可工作,手册上给出的曲线在


100uA


附近最


平坦,所以通过


R5


控制电流


100uA


左右。


OP2


构成一个同向放大器,将基准放大,向调理电路及传感器供电。因为宽输入电压、低功耗的稳压


器稀少,成本高;将基准放大作为稳压电源是一个廉价的方案。



该部分电路也可以选择现成的集成电路。比如


XTR115/116/105


等,精度和稳定


性比自制的好,自身功耗也更低(意味着能留更 多电流给调理电路,调理部分更容易设计)


。但成本比上述方案高


10


倍以上


.



4.


两线制压力变送器设计



压力桥、称重传感器输出信号微弱,都属于


mV


级信号。这一类小信号一般都要求用差动放大器对其进行第一级放大。


一般选用低失调、 低温飘的差动放大器。另外在两线制应用中,低功耗也是必需的。


AD623

< p>
是常用的低功耗精密差动放大器,常用在差分输出前


级的放大。

< p>


AD623


失调最大


2 00uV


,温飘


1uV/


度,在一般压 力变送应用保证了精度足够。



R0



0.4V


叠加在


AD623

< p>


REF


脚(


5


脚)上,在压



=0


情 况下通过调整


R0


使输出


4mA


,再调整


RG


输出


2 0.00mA


,完成校准。



电路设计 时需注意,压力桥传感器相当于一个千欧级的电阻,耗电


一般比较大。适当降低压力桥的 激励电压可以减小耗电电流。但是输出幅度也随之下降,需要提高


AD623

< p>
的增益。图


6


给出的传感器采用恒压供

< p>
电,实际应用中大部分半导体压力传感器需要恒流供电才能获得较好的温度特性,可以用一个运放构 成恒流源为其提供激励。





-


-


-


-


-


-


-


-



本文更新与2021-02-06 10:17,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/607399.html

为什么用4到20毫安的相关文章