-
态密度(
Density of States
,简称
DOS
)
在
DOS
结果图里可以查看是导体还是绝缘体还是半导体,
请问怎么看。理论是什么?或者
哪位老师可以告诉我这方面的知识可以通过学习什么获得
。不胜感激。
查
< br>看
是
导
体
还
是
绝
缘
体
还
是
半
导
p>
体
,
最
好
还
是
用
能
带
图
DOS
的话看费米能级两侧的
能量
差
谢希德。
复旦版的
《固体能带论》
一书中有,
请参阅!
另外到网上或者学校的数据库找找
“
第
一
性
原
理
”
方
面
的
论
文
,
里
面<
/p>
通
常
会
有
一
些
计
算
分
析
。
下
面
有
一
篇
可
以
下
载
的
:
ZnO
的第一性原理计算
hoffman
的《固体与表面》对态密度的理解还是很有好处的。
下面这个是在版里找的,多看看吧:
如何分析第一原理的计算结果
用第一原理计算软件开展的工
作,分析结果主要是从以下三个方面进行定性
/
定量的讨
论:
1
、
p>
电荷
密度图(
charge
density
);
2
、能带结构(
Energy
Band
Structure
);
3
、态密度(
Density
of
States
,简称
DOS
)。
电荷
密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级
研究
人员来
讲不会有任何的疑问。
唯一需要注意的就是这种分析的种种衍生形式,
比如差分电荷密图
(
d
ef-ormation
charge
density
)和二
次差分图(
difference
charge
density
)等等,加自旋极
化的工作还可能
有自旋极化电荷
密度
图(
spin-
polarized
charge
density
)
。所谓
“
差分
”
是指
原子组成体系(团簇)之后电荷的重新
分布,
“
二次
”
是指同一个体系
化学
成分或者几何构型
改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情
况。通过电荷聚集(
accumulation
)
/
损失(
depletion
)的具体空间分布,看成键的极性强
弱;通过某格点附近的电荷分布形状判断成键的
轨道(这个主要是对
d
轨道的分析,对于
s
或者
p
轨道的形状分析我还没有见
过)。分析总电荷密度图的方法类似,不过相对而言,这
种图所携带的信息量较小。
p>
<
/p>
能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带
这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,
p>
我在这篇文章中不想涉及,
这里只考虑已得到的能带,
如何能从里面看出有用的信息。
首先
当然可以看出这
个体系是金属、
半导体
还是
绝缘体
p>
。
判断的标准是看费米能级和导带
(也即<
/p>
在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则
为半导体或者绝缘体。
对于本征半导体,
还可以看出是直接能隙还是间接能隙:
如果导带的
最低点和价
带的最高点在同一个
k
点处,则为直接能隙,否则为间接能隙。
在具体工作中,
情况要复杂得多,
而且各种领域中感兴趣的方面
彼此相差很大,
分析不可能像上述分析一样
直观和普适。不过仍
然可以总结出一些经验性的规律来。主要有以下几点:
1
)
因为目前的计算大多采用超单胞(
supercell
)的形式,在一个单胞里有几十个原子
以及上百个电子,
所以得到的能带图往往在远低于费米能级处非常平坦,
也非常密集。
原则
上讲,这个区域的能带并不具备多大的解说
/
阅读价值。因此,不要被这种现象吓住,一般
的工作中,我们主
要关心的还是费米能级附近的能带形状。
2
)
能带的宽窄在能带的分析中占据
很重要的位置。能带越宽,也即在能带图中的起伏
越大,说明处于这个带中的电子有效质
量越小、非局域(
non-local
)的程度越大、组成这条
能带的原子轨道扩展性越强。如果形状近似于抛物线形状,一般而言会被冠以类
sp
带(
sp
-lik
e
band
)之名。反之,一条比较窄的能带表明对应于这条
能带的本征态主要是由局域于
某个格点的原子
轨道
组成,这条带上的电子局域性非常强,有效质量相对较大。
3
)
如果体
系为掺杂的非本征
半导体
,注意与本征半导体的能带结构图进行
对比,一般
而
言在能隙处会出现一条
新的、比较窄的能带。这就是通常所谓的杂质态
(doping
state)
,
或者按照掺杂半导体的类型称为受主态或者施
主态。
4
)
关于自旋极化的能带,一般是画出两幅图:
majority
spin
和
minority
spin
。经典的
说,
分别代表自旋向上和自旋向下的
轨道
所组成的能带结构。
p>
注意它们在费米能级处的差异。
如果费米能级与
majority
spin
的能带图相交而处于
minority
spin
的能隙中,则此体
系具有
明显的自旋极化现象,而该体系也可称之为半金属(
ha
lf
metal
)。因为
majority
spin
与费
米能级相交的能带主要由
杂质原子轨道组成,所以也可以此为出发点讨论杂质的
磁性
特征
。
5
)
<
/p>
做界面问题时,衬底材料的能带图显得非常重要,各高对称点之间有可能出现不同
的情况。具体地说,在某两点之间,费米能级与能带相交;而在另外的
k
的区间上,费米能
级正好处在导带和价带之间。这样,衬底材料
就呈现出各项异性:对于前者,呈现金属性,
而对于后者,
呈现
绝缘性。
因此,
有的工作是通过某种材料的能带图而选择不同的
面作为生
长面。具体的分析应该结合试验结果给出。
(如果我没
记错的话,物理所薛其坤
研究
员曾经
分
析过
$$beta$$-Fe
的
(100)
和
(111)
面对应的能带。有兴趣的
读者可进一步查阅资料。)
原则上讲,态密度可以作为
能带结构的一个可视化结果。很多分析和能带的分析结果可
以一一对应,
很多术语也和能带分析相通。
但是因为它更直观,
因此
在结果讨论中用得比能
带分析更广泛一些。简要总结分析要点如下:
1
)
在整个
能量
区间之内分布较为平均、没有局域尖峰的
DOS
,对应的是类
sp
带,表
明电子的非局域化性质很强。相反,对于一般的过渡金属而言,
d
轨道
的
DOS
一般是一个
很大的尖峰,说明
d
电子相对比较局域,相应的能
带也比较窄。
2
)
从
DO
S
图也可分析能隙特性:若费米能级处于
DOS
值为零的区间中,说明该体系
是
半导体
或
绝缘体
;若有分波
DOS<
/p>
跨过费米能级,则该体系是金属。此外,可以画出分波
(
PDOS
)和局域(
LDOS
< br>)两种态密度,更加细致的
研究
在各点处的分波成键情况
。
3
)
从
p>
DOS
图中还可引入
“
赝能隙
”
(
pseudogap<
/p>
)的概念。也即在费米能级两侧分别有
两个尖峰。而两个尖峰之间
的
DOS
并不为零。赝能隙直接反映了该体系成键的共价性的强
弱:越宽,说明共价性越强。如果分析的是局域态
密度
(
LDOS
),那么赝能隙反映的则是
相邻两个原子成键的强弱:
赝能隙越宽,
说明两
个原子成键越强。
上述分析的理论基础可从
紧束缚理论出发得到
解释:实际上,可以认为赝能隙的宽度直接和
Hamiltonian
< br>矩阵
的非对
角元相关,彼此间成单调递增的函数关系。<
/p>
4
)
对于自
旋极化的体系,与能带分析类似,也应该将
majority
spin
和
minority
spin
分别画出,
若费米能级与
majority
的
DOS
相交而处于
minority
的
DO
S
的能隙之中,
可以说
明该体系的自旋
极化。
5
)
考虑<
/p>
LDOS
,如果相邻原子的
LDOS
p>
在同一个
能量
上同时出现了尖峰,则我们将
其
称之为杂化峰
(
hybridize
d
peak
)
,
这个概念直观地向我们展示了相邻原子之间的作用强弱。
请教楼主:
1
、我一直不明白
DOS
图中的非键的概念。这里的非键,到底
是什么意思?
DOS
图中能不
能看出来
?如何看?
2
、金属中除了金属键,
电子都是以什么状态存在的?是非键吗?所谓的非键是不是就是我
们过去所说的自由电子
?还是说,金属键的电子就是自由电子呢?
金属中金属键占大部分啊,还是说非键占大部分?
3
、离子键在
DOS
中能
不能看出来?如何看?
4
、我曾看到
文献上说,费米能附近的非键是金属性的标志。这句话如何理解?
1.
其实
DOS
是固体物理的概念
,而非键(以及成键和反键等)是结构化学的概念,但是现
在经常用在同一个体系说明不
同的问题。先说一下非键,然后在把它跟
BAND
和
DOS
结合
起来。
p>
从结构化学的角度来说,
分子轨道是由原子轨道线性组合而成。
p>
如果体系有
n
个原子轨道进
行组合,
就会产生
n
个分子轨
道
(即轨道数目守恒,其实从量子力学的角度,就是正交变换
不
会改变希尔伯特空间的维数)。这些分子轨道的能量,可以高于,近似等于,或是低于原
子轨道的能量,它们分别对应于成键,非键,或是反键态。简单的说,非键轨道跟组成它的
原子轨道能量差不多,如果有电子排在该轨道上,则对体系成键能量上没有太大帮助。
由于固体中的每个能带都是有许多原子轨道组合而成,
简单的说
,
对于某一只能带,
它的上
半部对应化
学上所谓的反键态,
下半部分对应于成键态,
而中部的区域对应
于非键态。
但是,
由于能带是非常密集的,从而是连续(准连续
的),对于某个具体的能级,往往很难说出具
体是什么键态,
如
果这个能级不是对应于能带低,
或是能带顶的话。而且,
一般费
米面附近
的能带不仅仅由一种原子轨道扩展而成,
而是不同种轨
道杂化而成,
要定量说明是比较难的。
2.
关于金属,
粗糙的说,
金属中的
电子是以电子气的情况出现,
分布于整个金属所在的空间。
正价
离子实通过对
“
公共
”
电子气的吸引而聚集在一起。
从化学上讲,
金属键可以
看做是一种
共价键,只是没有饱和性和方向性。
但是这种理解太
粗糙。从固体物理的角度,金属中电子
分布跟半导体,绝缘体(也就是电介质)类似,对
基态都是按照能量最低排在能带上。只不
过,金属的费米能级穿过电子所在的能带
(也就是电子没有占满该能带),
从而使得费米面
附近的电子参与导电。所以,非键并不是我们说的自由电子,
两者没有必然的联系。
金属中
的电子也不是完全的自由电子,其波函数还是受离子周期调制的布洛赫波,而非平
面波。
3.
离子键等不能在
DOS
中看,
我发过专门的帖子。
单纯的从
DOS
最多可以定性的看出杂化,
但是不能看出杂化轨道中的电子究竟偏向哪个原子,因此不能看出离子键或是共价键的情
况。最近我师弟问我一个很垃圾杂志上用
DOS
分析离子键或是共价键的文章,这个文章我
看了一下,它的分析是错的。
4.
根据我上面的说法,由于固体的
“
非键态
”
在
DOS
或是
BAND
的中部,
当费米能级附近是
非键态时,
换句话说,就是表明费米能级穿越
了能带的中部,
说明电子没有占满,
因此是金
< br>属晶体,是金属性的标识。这么理解有道理。
第一原理计算结果讨论(系列二)
讨
论
一
:
p>
电荷密度图(
charge
density)
,变型电荷密图(
def-ormation
charge density
)和差分电荷密度
图(
difference
charge
den
sity
)等等,加自旋极化的工作还可能有自旋极化电荷密度图
(
spin-polarized charge density
< br>)。所谓“变型”是指原子组成体系(团簇)之后电荷的重新
分布,
“差分”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过
< br>这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(
accu
mulation
)
/
损
失(
depletion
)的具体空间分布,看成键
的极性强弱;通过某格点附近的电荷分布形状判断
成键的轨道(这个主要是对
d
轨道的分析,对于
s
或
者
p
轨道的形状分析我还没有见过)。
问题:
我对这三种电荷图理解的不透
彻,
通过这三种电荷密度图能判断出是共价键和离子键
吗
?
如
果
能
,
怎
样
判
断
出
来
?
最
好
能
给
出
三
种
电
荷<
/p>
图
加
以
说
明
。
讨
论
二
:
对于成键分析用的晶体轨道重叠布局图,如何分析?
谁会
MULLIKEN
电荷布局图,请
各
位
虫
友
帮<
/p>
忙
讨
论
这
个
问
题
,
最
好
给
个
图
,
分
析
一
下
。
多
谢
。
讨<
/p>
论
三
:
TDOS,SDOS,SPDOS,LDOS,PDOS
是从不同的侧
面去描写体系的电子结构,
反应的意义也不
同,
大家谁知道
TDOS,SDOS,SPDOS,LDOS,PDOS
的区别?最好贴个图,
一起分析一下,
共
同
学
习
。
希望得到版主和各位虫友的支持,
会的在温习一下
,
不会的就当学点新知识,
大家共同学习。
【讨论】关于用
态密度
来看体系成键的
性质
这里,先摆出我的观点,就是态密度跟体系成键性质(也
就是局域键是共价,离子,金属,
或是混合键等等之类),并没有直接关系,但它可以从
整体上(而非局域键)判断体系是金
属
,
半
导
体
或
是
绝
缘
体
(
p>
这
是
能
带
论
的
根
本
观
点
之
一
< br>)
。
态密度的定义为(单位体积)单位能量上的状态数。简单的说,就是在某个能量附近,体系
状态的分布的稠密程度。举个简单的例子,比如常见的氢分子和
CO2
分子的态密度,很显
然,在不考虑能级各种展宽因素影响的情况下,都是
p>
DELTA
函数。那么,从这一堆
DELT
A
函数,
能看出来前者是共价键而后者是共价键和离子键的一种
混合键吗?显然不能。
(要注
意
的
p>
是
,
CO2
中
p>
C-O
有
离
子
p>
成
分
的
,
不
是
纯
的
共
价
键
,
< br>虽
然
离
子
成
分
较
少
。
)
对于固
体,
我们能从
TDOS
的带隙来判断体
系的整体性质,
比如是金属还是半导体等等。
但
是无法给出更细的信息。那么
LDOS
和
PDOS
呢?它们能给出什么信息。以
LDOS
p>
为例,我
们可以给出体系某个原子的
LDO
S
。我认为
LDOS
只能给出该原子原
子轨道成键后的杂化情
况,
但是说明不了与周围原子的价键性质
,
也就是不能直接说明是离子键还是共价键。
其实
这点很容易理解,比如,考虑
A
原子的
S
轨道和
B
原子的
S
轨道有杂化(为简单起见不考
-
-
-
-
-
-
-
-
-
上一篇:《研究生英语精读教程》(第三版下)Unit 4课文
下一篇:26种形容词后缀