-
附件
A
、三极管的
Ps
pice
模型参数
.Model
、
LPNP) [model
parameters]
模型参数
含
义
单
位
AF
flicker noise exponent
BF
ideal maximum forward beta
BR
ideal maximum
reverse beta
CJC
base-collector zero-bias
p-n capacitance
farad
CJE
base-emitter zero-bias p-n capacitance
farad
CJS (CCS)
Substrate zero-bias p-n capacitance
farad
EG
bandgap voltage (barrier
height)
eV
FC
forward-bias depletion capacitor
coefficient
GAMMA
epitaxial
region doping factor
IKF (IK)
corner
for forward-beta high-current roll-off
amp
IKR
corner for reverse-beta high-current
roll-off
amp
IRB
current at which Rb falls halfway to
amp
IS
transport saturation
current
amp
ISC (C4)
base-collector leakage
saturation current
amp
ISE
(C2)
base-emitter leakage saturation
current
amp
ISS
substrate p-n saturation current
amp
ITF
transit time dependency on Ic
amp
KF
flicker noise coefficient
MJC (MC)
base-collector p-n grading
factor
MJE (ME)
base-emitter p-n grading factor
MJS (MS)
substrate p-n grading
factor
NC
base-
collector leakage emission coefficient
NE
base-emitter leakage emission
coefficient
NF
forward current emission coefficient
NK
high-current roll-off coefficient
NR
reverse current emission coefficient
NS
substrate p-n
emission coefficient
PTF
degree
excess phase @
1/(2
?
?
TF)Hz
默认值
1.0
100.0
1.0
0.0
0.0
0.0
1.11
0.5
1E-11
infinite
infinite
infinite
1E-16
0.0
0.0
0.0
0.0
0.0
0.33
0.33
0.0
2.0
1.5
1.0
0.5
1.0
1.0
0.0
备
注
噪声指数
最大正向放大倍数
最大反向放大倍数
集电结电容
发射结电容
零偏集电极
-
衬底电容
饱和电流
集电结漏电流
发射结漏电流
噪声系数
集电结漏电系数
发射结漏电系数
正向电流系数
第
1
页
共
10
页
QCO
RB
epitaxial
region charge factor
coulomb
zero-bias (maximum)
base resistance
ohm
RBM
minimum base resistance
ohm
RC
collector
ohmic resistance
ohm
RCO
epitaxial region resistance
ohm
RE
emitter ohmic resistance
ohm
TF
ideal forward transit time
sec
TR
ideal reverse transit time
sec
0
-1
TRB1
RB temperature coefficient (linear)
C
0
TRB2
RB temperature coefficient (quadratic)
C
-2
0
-1
TRC1
RC temperature coefficient
(linear)
C
0
TRC2
RC
temperature coefficient (quadratic)
C
-2
0
-1
TRE1
RE temperature coefficient
(linear)
C
0
TRE2
RE temperature coefficient (quadratic)
C
-2
0
-1
TRM1
RBM temperature coefficient
(linear)
C
0
TRM2
RBM
temperature coefficient (quadratic)
C
-2
0
T_ABS
absolute temperature
C
0
T_MEASURED
measured temperature
C
0
T_REL_GLOBAL
relative to current temperature
C
0
T_REL_LOCAL
relative to AKO model temperature
C
VAF (VA)
forward Early voltage
volt
VAR (VB)
reverse Early voltage
volt
VJC (PC)
base-collector built-in potential
volt
VJE (PE)
base-emitter built-in
potential
volt
VJS (PS)
substrate p-n built-in potential
volt
VO
carrier mobility knee
voltage
volt
VTF
transit time dependency on Vbc
volt
XCJC
fraction of
CJC
connected internally to Rb
XCJC2
fraction
of
CJC
connected internally
to Rb
XTB
forward and reverse beta
temperature coefficient
XTF
transit time bias
dependence coefficient
XTI (PT)
IS temperature effect exponent
0.0
0.0
RB
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
infinite
infinite
0.75
0.75
0.75
10.0
infinite
1.0
1.0
0.0
0.0
3.0
最大基极电阻
最小基极电阻
正向传递时间
反向传递时间
RB
的温度系数
正向和反向放大倍数的温度影响系数
传递时间系数
IS
的温度影响系数
第
2
页
共
10
页
附件
B
、
PSpice Goal Function
特征函数
Bandwidth
(1, db_level)
BPBW (1, db_level)
CenterFreq (1, db_level)
Falltime (1)
Gain Margin
(1,2)
GenFall (1)
GenRise
(1)
HPBW (1, db_level)
LPBW
(1, db_level)
Maxr (1,
begin-x, end-x)
Overshoot (1)
Peak (1, n_occur)
Period (1)
Phase Margin (1,2)
Pulsewidth (1)
Risetime (1)
Swingr (1, begin-x, end-x)
TPmW2 (1, Period)
XatNthy
(1, Y-value, n-occur)
XatNthYn(1,Y_value,n_occur)
XatNthYp(1,Y_value,n_occur)
XatNthYpct(1,Y_PCT,n_occur)
YatX(1,X_value)
YatXpct(1,X_pct)
功能说明
计算波形
< br>1
从最大值下降
db_level
db
的波形宽度。
Same as
Bandwidth (1, db_level)
计算波形
1
从最大值下降
db_level
db
的两点的中心频率。
计算波形<
/p>
1
的下降时间。
计算波形
1
的相位为
-180
。
时,波形
2
的分贝
值。
类似于
Falltime (1)
,但
它的下降时间相对的
y
轴是起点于终点,而不是最大值与最小值
。
与
GenFall
(1)
类似,只是它是上升时间。
查找第一次比最大值低
db_level db
的
x
坐标。
(上升沿)
与
HPBW
类似,
只是用于下降沿。
查找区间的最大值。
计算最大值与终
点之间
y
轴坐标差与终点值的百分比。
查找第
n-occur
个峰值点的
p>
Y
值
计算波形<
/p>
1
的周期。
查
找波形
1
在
0
分贝时波形
2
的相位。
计算波形
1
的脉冲宽度。
计算波形
1
的上升时间。
计算在指定范围内,波形
1
的最大值与最小值之差。
查找波
形
1
上第
n-occur
个
Y-value
值时的
X
坐标值。
与
XatNthy
类似,但它查找的
Y
值
必须在下降沿上。
与
XatNthy
类似,但它查找的
Y
值必须在上升沿上
。
查找第
n-occur
个
Y
轴值为
Y
轴范围的
Y_pct%
时的
X
轴值。
查找
X-value
值处的
Y
值。
p>
查找
X
轴值为<
/p>
X
轴范围的
X_pct%
时的
Y
轴值。
第
3
页
共
10
页
附件
C Modeling voltage-
controlled and temperature-dependent resistors
Analog Behavioral Modeling (ABM) can be
used to model a nonlinear resistor through use of
Ohm
抯
law and tables
and expressions which describe
resistance. Here are some examples.
Voltage-controlled resistor
If a Resistance vs. Voltage curve is
available, a look-up table can be used in the ABM
expression. This table
contains
(Voltage, Resistance) pairs picked from points on
the curve. The voltage input is nonlinearly mapped
from
the
voltage
values
in
the
table
to
the
resistance
values.
Linear
interpolation
is
used
between
table
values.
Let
抯
say that
points picked from a Resistance vs. Voltage curve
are:
Voltage
0.5
1.0
2.0
Resistance
25
50
100
The ABM
expression for this is shown in
Figure
1
.
Figure 1 -
Voltage controlled resistor using look-up table
Temperature-dependent resistor
第
4
页
共
10
页
A
temperature-dependent resistor (or thermistor) can
be modeled with a look-up table, or an expression
can be
used to describe how the
resistance varies with temperature. The
denominator in the expression in
Figure
2
is
used
to
describe
common
thermistors.
The
TEMP
variable
in
the
expression
is
the
simulation
temperature,
in
Celsius.
This is then
converted to Kelvin by adding 273.15. This step is
necessary to avoid a divide by zero problem in
the denominator, when T=0 C.
NOTE: TEMP can only be used in ABM
expressions (E, G devices).
Figure
3
shows the results of a DC sweep of
temperature from -40 to 60 C. The y-axis shows the
resistance or
V(I1:-)/1A.
Figure 2 - Temperature controlled
resistor
Figure 3 - PSpice plot of Resistance
vs. Temperature (current=1A)
Variable Q
RLC network
第
5
页
共
10
页
-
-
-
-
-
-
-
-
-
上一篇:足球术语英文表达
下一篇:足球常用语中英文对照