自学高中数学的软件下载-高中数学设计意图怎么写
高中数学选修4-4极坐标与参数方程练习题 
     高中数学选修4-4综合试题
一、选择题
 
1.
直线
y?2x?1
的参数方程是(
) 
?
x?2t?1
?
x?t
2
A、
?
(
t为参数)         B、
?
(t为参数)  
2
?
y?4
t?1
?
y?2t?1
x?sin
?
?
x?t?1
C、  
?
(t为参数)         D、
?
(t为参数) 
?
y?2t?1
y?2sin
?
?1
?
?
?
x?4t
2
(t为参数)
上,则
|PF|
等于(    ). <
br>2.
若点
P(3,m)
在以点
F
为焦点的抛物线
?<
br>?
y?4t
A.
2
         B.
3
C.
4
        D.
5
  
?
??
3.<
br>已知
M
?
?5,
?
,下列所给出的不能表示点M的坐标的是(
) 
3
??
A、
?
5,?
?
?
?
?
?
    
3
?
B、
?
5,
?
?
4
?
?
?
   
3
?
C、
?
5,?
?
?
2
?
?
?
3
?
D、
?
?5,?
?
?
5
?<
br>?
?
 
3
?
4.
极坐标系中,下列各点与点P(ρ,
θ)(θ≠kπ,k∈Z)关于极轴所在直线
 
对称的是(    )
A.(-ρ,θ)B.(-ρ,-θ)C.(ρ,2π-θ)   D.(ρ,2π+θ)
5.
点
P1,?3
,则它的极坐标是
A、
?
2,
??
(    )
?
?
?
?
?
   
3
?
 B、<
br>?
2,
?
?
4
?
3
?
?
?
 C、
?
2,?
?
?
?
?
3<
br>?
?
    D、
?
2,?
?
?
4
?
3
?
?
 
?
6.
直角坐标系xoy中,以原点为
极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲
?
x?3?cos
?线
C
1
:
?
 (
?
为参数)和曲线
C
2
:
?
?1
上,则
AB
的最小值为(    ).
?
y?sin
?
   A.1          B.2
C.3            D.4 
1
?
?
x?t?
7.参数方程为
?
t
(t为参数)
表示的曲线是(    )
?
?
y?2
A.一条直线   B.两条直线   C.一条射线
D.两条射线 
?
x?1?2t
8.
若直线
?
t为参数?
与直线4x?ky?1垂直,则常数k?
(   )
?
?
y?2?3t
1  4
高中数学选修4-4极坐标与参数方程练习题 
A.-6
B.
?
1
1
        C.6          D. 
6
6
9.
极坐标方程
?
?4cos
?
化为直角坐标方
程是(    )        
A.
(x?2)?y?4
B.
x?y?4
   
C.
x?(y?2)?4
D.
(x?1)?(y?1)?4
 
2222
2222
10.
柱坐标(2,
2
?
,1)对应的点的直角坐标是(    ).
3
A.(
?1,3,1
)
B.(
1,?3,1
)       C.(
3,?1,,1
)
D.(
?3,1,1
) 
?
x??1?8cos
?
11.<
br>点
(1,2)
在圆
?
的(    ).
y?8sin
?
?
A.内部      B.外部  C.圆上
D.与
θ
的值有关 
?
1
x??
?
?
?<
br>2
12.
曲线
2
?
?4sin(x?)
与曲线
?
4
?
y?
1
?
?
?2
2
t<
br>2
的位置关系是(    )。 
2
t
2
A、 相交过圆心
B、相交      C、相切        D、相离
(补充)直线
?
?
x??2?t
 
(t为参数)
被
圆
(x?3)
2
?(y?1)
2
?25
所截得的弦长为(
).
y?1?t
?
1
        C.
82
D.
93?43
  
4
A.
98
B.
40
二、填空题
13.
在极坐标
?
?
,
?
?
 
?
0?
?
?2
?
?
中,曲线
?
?2sin<
br>?
与
?
cos
?
??1
的交点的极坐标为
_
___________.
 
14.
在极坐标系中,圆
?
?2
上的点到直线
?
cos
?
?3sin
?
?6
的距
离的最小值
是           .
??
?
x=1+cosθ
15.
(坐标系与参数方程选讲选做题)
圆C:
?
(θ为参数)的圆心到直线 
y=sinθ
?
?
?
x=?22+3t
l:
?
(t为参数)的距离为          . <
br>?
?
y=1?3t
t?t
?
?
x?e?e
(
t为参数)
的普通方程为__________________.
13.参数方程
?
t?t
?
?
y?2(e?e)
2  4
高中数学选修4-4极坐标与参数方程练习题 
?
?
x??2
?2t
(t为参数)
上与点
A(?2,3)
的距离等于
2
的
点的坐标是_______. 14.直线
?
?
?
y?3?2t
15
.直线
?
?
x?tcos
?
?
x?4?2cos
?
与圆
?
相切,则
?
?
_______________. 
?
y?tsin
?
?
y?2sin
?
22
16.设
y?tx(t为参数)
,则圆
x?y?4y?0
的参数方程为___
_________________.
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分10分) 
?
?
x?1?t
求直线
l<
br>1
:
?
(t为参数)
和直线
l
2
:x?y?
23?0
的交点
P
的坐标,及点
P
?
?
y??5?3t
与
Q(1,?5)
的距离.
18.(本小题满分12分) 
过点
P(
10
,0)
作倾斜
角为
?
的直线与曲线
x
2
?12y
2
?1
交于点
M,N
,
2
求
|PM|?|PN|
的值及相应的
?
的值.
19.(本小题满分12分) 
已知
?ABC
中,
A(?2,0),
B(0,2),C(cos
?
,?1?sin
?
)
(
?为变数), 
求
?ABC
面积的最大值. 
20.(本小题满分12分)
已知直线
l
经过点
P(1,1)
,倾斜角
?
?
(1
)写出直线
l
的参数方程. 
(2)设
l
与圆
x?y?4<
br>相交与两点
A,B
,求点
P
到
A,B
两点的距离之积
. 
21.(本小题满分12分) 
在直角坐标平面内,以坐标原点
O
为极点
,
x
轴的非负半轴为极轴建立极坐标系.已知点
M
22
?
6
,
 
?
?
?
?
x?1?2cos
?
,
?
的极坐标为
?
42,
?
,曲线
C
的
参数方程为
?
(
?
为参数). 
4
??
?
?
y?2sin
?
,
(1)求直线
OM
的直角坐标方程;
(2)求点
M
到曲线
C
上的点的距离的最小值.
22.(本小题满分12分) 
?
x?5cos
?
3
P(?
3,?)
已知直线
l
过定点与圆
C
:
?
(
?
为参数)
相交于
A
、
B
两点. 
2
y?
5sin
?
?
求:(1)若
|AB|?8
,求直线
l
的方程; 
3  4 
高中数学选修4-4极坐标与参数方程练习题 
(1)若点
P(?3,?)
为弦
AB
的中点,求弦
AB
的
方程. 
3
2
4  4