关键词不能为空

当前您在: 主页 > 数学 >

高中数学必修一集合与函数概念知识点梳理

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-16 14:39
tags:高中数学集合

北京五中高中数学王琦-高中数学小题狂做考点过关


高中数学 必修1知识点
第一章 集合与函数概念
〖1.1〗集合
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N
表示自然数集,
N
?

N
?
表示正整数集,
Z
表示整数集,
Q
表示有理数集,
R
表示实数集.
(3)集合与元素间的关系
对象
a
与集合
M
的关系是
a?M
, 或者
a?M
, 两者必居其一.
(4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来, 写在大括号内表示集合.
③描述法:{
x
|
x
具有的性质}, 其中
x
为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集 .③不含有
任何元素的集合叫做空集(
?
).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
名称 记号 意义
(1)A
?
A
A中的任一元素都
属于B
(2)
??A

(3)若
A?B

B?C
, 则
A?C

(4)若
A?B

B?A
, 则
A?B

A(B)
BA
性质 示意图
A?B

子集
(或
B?A)

A
?
B
?

A
(A为非空子集)
A?B
, 且B中
(1)
??
?
BA
真子集 至少有一元素不属
(或B
?
A)
于A
?
(2)若
A?B

B?C
, 则
A?C

???

集合
相等
A?B

A中的任一元素都
(1)A
?
B
属于B, B中的任
(2)B
?
A
一元素都属于A
nn
A(B)

n
(7)已知集合
A

n(n?1)
个元素, 则它有
2
个子集, 它有
2?1
个真子集, 它有
2?1
个非空子集, 它有
2?2
非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集
名称 记号 意义 性质 示意图
n


{x|x?A,

交集
AIB

x?B}

(1)
AI
(2)
AI
(3)
AI

AI
{x|x?A,

并集
AUB

x?B}

A?A

???

B?A

B?B

(1)
AUA?A

(2)
AU??A

(3)
AUB?A


AUB?B

1

U
(AIB)?(
U
A )U(?
U
B)

U
(AUB)?(
U
A)I(?
U
B)
AI(?
U
A)??

AB

A
B

补集
?
U
A

{x|x?U,且x?A}

2
AU(?
U
A)?U


【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
不等式 解集
|x|?a(a?0)

|x|?a(a?0)

{x|?a?x?a}

x|x??a

x?a}


ax?b
看成一个整体, 化成
|x|?a

|ax?b|?c,|ax?b|?c(c?0)

|x|?a(a?0)
型不等式来求解
(2)一元二次不等式的解法
判别式
??b
2
?4ac

二次函数
??0

??0

??0

y?ax
2
?bx?c(a?0)
的图象
一元二次方程
O



ax
2
?bx?c?0(a?0)
的根
?b?b
2
?4ac
x
1,2
?
2a
(其中
x
1
? x
2
)

x
1
?x
2
??
b

2a
无实根
ax
2
?bx?c?0(a?0)
的解集
{x|x?x
1

x?x
2
}

{x|
x??
b
}

2a
R

ax
2
?bx?c?0(a?0)
的解集

{x|x
1
?x?x
2
}

?

?


〖1.2〗函数及其表示
【1.2.1】函数的概念
(1)函数的概念
①设
A

B
是两个非空的数集, 如果按照某种对应法则
f
, 对于集合
A
中任何一个

x
, 在集合
B
中都有唯一确定的数
f(x)
和它对应, 那么这样的对应(包括集合
A

B
以及
A

B< br>的对应法则
f
)叫做集合
A

B
的一个函数, 记作
f:A?B

②函数的三要素:定义域、值域和对应法则.
③只有定义域相同, 且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法
①设
a,b
是两个实数, 且
a?b
, 满足
a?x?b
的实数
x
的集合叫做闭区间, 记做
[a,b]
;满足
a?x?b
的实数
x
的集合叫做开区 间, 记做
(a,b)
;满足
a?x?b
, 或
a?x?b
的实数
x
的集合叫做半开半闭区间, 分别记做
[a,b)

(a,b]
;满足
x?a,x?a,x?b ,x?b
的实数
x
的集合分别记做
[a,??),(a,??),(??,b ],(??,b)

注意:对于集合
{x|a?x?b}
与区间
(a,b)
, 前者
a
可以大于或等于
b
, 而后者必须
a?b

(3)求函数的定义域时, 一般遵循以下原则:

f(x)
是整式时, 定义域是全体实数.

f(x)
是分式函数时, 定义域是使分母不为零的一切实数.

f(x)
是偶次根式时, 定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零, 当对数或指数函数的底数中含变量时, 底数须大于零且不
等于1.

y?tanx
中,
x?k
?
?
?
2
(k?Z)

⑥零(负)指数幂的底数不能为零.
⑦若
f(x)
是由有限个基本初等函数的四则运算而合成的函数时, 则其定义域一般是各
基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题, 一般步骤是:若已知
f(x)
的定义域为
[a,b]
, 其复合
函数
f[g(x)]
的定义域应由不等式
a?g(x)?b
解出.
⑨对于含字母参数的函数, 求其定义域, 根据问题具体情况需对字母参数进行分类讨
论.


⑩由实际问题确定的函数, 其定义域除使函数有意义外, 还要符合问题的实际意义.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上, 如果在函数的
值域中存在一个最小(大)数, 这个数就是函数的最小(大)值.因此求函数的最值
与值域, 其实质是相同的, 只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数, 我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和, 然后根据变量的取值
范围确定函数的值域或最值.
③判别式法:若函数
y?f(x)
可以化成一个系数含有
y
的关于
x
的二次方程
a(y)x< br>2
?b(y)x?c(y)?0
, 则在
a(y)?0
时, 由于
x,y
为实数, 故必须有
??b
2
(y)?4a(y)?c(y)?0
, 从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的, 三角代换可将代数函数的最
值问题转化为三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.
⑧函数的单调性法.
【1.2.2】函数的表示法
(5)函数的表示方法
表示函数的方法, 常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对 应关系.列表法:就是列出表格来表
示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间 的对应关系.
(6)映射的概念
①设
A

B
是两个集合, 如果按照某种对应法则
f
, 对于集合
A
中任何一个元素, 在
集合
B
中都有唯一的元素和它对应, 那么这样的对应(包括集合
A

B
以及
A

B< br>的
对应法则
f
)叫做集合
A

B
的映射, 记作
f:A?B

②给定一个集合
A
到集合
B
的映射, 且
a?A,b?B
.如果元素
a
和元素
b
对应, 那
么我们把元素
b
叫做元素
a
的象, 元素
a
叫做元素
b
的原象.
〖1.3〗函数的基本性质
【1.3.1】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
函数的
性 质
定义 图象 判定方法


如果对于属于定义 域I内
某个区间上的任意两个
自变量的值x
1
、x
2
,当x <
1

..
x时, 都有f(x)212
...
..........
那么就说f(x)在这个区
间上是增函数.
...
函数的
单调性
如果对于属于定义域I内
某个区间上的任意 两个
自变量的值x
1
、x
2
, 当
x<
12

时, 都有

..
x

f(x)>f(x), 那么就说
12..
.........
f(x)在这个区间上是减

y
y=f (X)
f(x )
1
f(x )
2
o
x
1
x
2
x
(1)利用定义
(2)利用已知函数
的单调性
(3)利用函数图象
(在某个区间图
象上升为增)

(4)利用复合函数
(1)利用定义
(2)利用已知函数
的单调性
(3)利用函数图象
(在某个区间图
象下降为减)
(4)利用复合函数
y
f(x )
1
y=f(X)
f(x )
2
o
x
1
x
2
x

函数.
..
②在公共定义域内, 两个增函数的和是增函数, 两个减函数的和是减函数, 增函数
减去一个减函数为增函数, 减函数减去一个增函数为减函数.
③对于复合函数
y?f[g(x)]
, 令
u?g(x)
, 若
y?f(u)
为增,
u?g(x)
为增, 则
y?f[g(x)]
为增;若
y?f(u)
为减,
u?g(x)
为减, 则
y?f[g(x)]
为增;若
y?f(u)
为增,
u?g(x)
为减, 则
y?f[g(x)]
为减;若
y?f(u)
为减,
u?g(x)
为增, 则
y?f[g(x)]
为减.
(2)打“√”函数
f(x)?x?
a
(a?0)
的图象与性质
x
y

f(x)
分别在
(??,?a]

[a,??)
上为增函数, 分别在
[?a,0)

(0,a]
上为减函数.
(3)最大(小)值定义
①一般地, 设函数
y?f(x)
的定义域为
I
, 如果存在实数
(1)对于任意的
x?I
, 都有
f(x)?M

M
满足:
(2)存在
x
0
?I
, 使得
f(x
0
)?M
.那么, 我们称
M

函数
f(x)
的最大值, 记作
f
max
(x)?M

②一般地, 设函数
y?f(x)
的定义域为
I
, 如果存在实数
m
满足 :(1)对于任意的
(2)存在
x
0
?I
, 使得
f(x
0
)?m
.那么, 我们称
m
是函
x?I
, 都有
f(x)?m

o

x



f(x)
的最小值, 记作
f
max
(x)?m

【1.3.2】奇偶性
(4)函数的奇偶性
①定义及判定方法
函数的
性 质
定义
如果对于函数f(x)定义
域内任意一个x, 都有
f(-x)=-f(x),那么函
...........
数f(x)叫做奇函数.
...
函数的
奇偶性

如果对于函数f(x)定义
域内任意一个x, 都有
f(-x)=f(x),那么函数
..........
f(x)叫做偶函数.
...

②若函数
f(x)
为奇函数, 且在
x?0
处有定义, 则
f(0)?0

③奇函数在
y
轴两侧相对称的区间增减性相同, 偶函数在
y
轴两侧相对称的区间增减
性相反.
④在公共定义域内, 两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),
两个偶函数(或奇函数)的积(或商)是偶函数, 一个偶函数与一个奇函数的积(或
商)是奇函数.
〖补充知识〗函数的图象
(1)作图
利用描点法作图:
①确定函数的定义域; ②化解函数解析式;
③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.
利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对 数函数、幂函数、三角函
数等各种基本初等函数的图象.
①平移变换
h?0,左移 h个单位
y?f(x)????????y?f(x?h)
h?0,右移|h|个单位
k?0,上移k个单位
y?f(x)????????y?f(x)?k

k?0,下移|k|个单位
图象 判定方法
(1)利用定义(要
先判断定义域是否
关于原点对称)
(2)利用图象(图
象关于原点对称)
(1)利用定义(要
先判断定义域是否
关于原点对称)
(2)利用图象(图
象关于y轴对称)
②伸缩变换
0?
?
?1,伸
y?f(x)?????y?f(
?
x)

?
?1,缩
0?A?1,缩
y?f(x)?????y?Af(x)

A?1,伸


③对称变换
y轴
x轴
??y?f(?x)

y?f(x)????y??f(x)

y?f(x)? ?
直线y?x
原点
y?f(x)????y??f(?x)

y?f(x)?????y?f
?1
(x)

去掉y轴左边图象
y?f(x)????????????????y?f(|x|)

保留y轴右边图象,并作其关于y轴对称图象
保留x轴上方图象
y?f(x)???? ??????y?|f(x)|

将x轴下方图象翻折上去
(3)用图
函数图象形象地显示了函数的性质, 为研究数量关系问题提供了“形”的直观性, 它
是探求解题途径, 获得问题结果的重要工具.要重视数形结合解题的思想方法.

(2)识图
对于给定函数的图象, 要能从图象的左右、上下分别范围、变化趋势、对称性等 方面研
究函数的定义域、值域、单调性、奇偶性, 注意图象与函数解析式中参数的关系.

淄博五中高中数学老师-高中数学解题研究会qq群


人教版高中数学函数定义-初高中数学衔接教材序言


高中数学函数图像全解图片-高中数学三角恒等变换题


高中数学奥林匹克竞赛常考公式-高中数学函数极限在哪里


有专项资料的高中数学-南通高中数学基础训练测试题必修二


高中数学专题斜率应用-福建省高中数学教学如何安排


一些关于高中数学的微信公众号-新课程高中数学课堂教学心得


高中数学sn-高中数学基础题2000道



本文更新与2020-09-16 14:39,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/399853.html

高中数学必修一集合与函数概念知识点梳理的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文