高中数学必修4三角恒等变换-高中数学作业个性化设计
WOED格式 
人教版高中数学必修一至必修四公式(必会) 
初高中衔接:
2babab 
2 
 
22 
22 
和平方:()()
(ab)aabb 
a和、差平方: 
立方和、立方差:a
3
b
3<
br>(ab)(a
2
abb
2
)和、差立方:(ab)
3
a
3
b
3
3a
2
b3ab
2
2;(abc)
2222
222 
abc2ab2bc2ac
(abc)abc2ab2bc2ac 
2;(abc)
2222
222
abc2ab2bc2ac 
(abc)abc2ab2bc2ac 
  
x
   
b 
韦达定理:设 
2 
1 
x 
2
a 
x
1
和x
2 
为axbxc0的两根,那么
c 
xx 
12 
a 
必修一:
(1)元素与集合的关系:属于()和不属于() 
 
集合与元
(2)集合中元素的特性:确定性、互异性、无序性 
素
(
集、无限集、空集
3)集合的分类:按集合中元素的个数多少分为:有限
 
(4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法
子
集:若xAxB,则AB,即A是B的子集。 
1、若集合中有个元素,则集合的子集有
nn
AnA(2-1) 
2个,真子集有个。 
2、任何一个集合是它本身的子集,即AA
关系3、对于集合
注 
A,B,C,如果AB,且BC,那么AC.
4、空集是任何集合的(真)子集。 
集合
真子集:若AB且AB(即至少存在xB但xA),则A是B的真子集。 
00
集合相等:且
ABABAB 
定义:ABxxA且
交集
xB
 
集合与集合
性质:AAA,A,ABBA,ABA,ABB,ABABA 
并集
定义:
 
ABxxA或xB
运
性质:AAA,AA,ABBA,ABA,ABB,ABABB 
算
Card(AB)Card(A)Card(B)-Card(AB)
定义:
CAxxUxAA 
且 
U
补集性质:,,,,
(CA)A(CA)AUC(CA)AC(AB)(CA)(CB)
 
UUUUUUU 
C(AB)(CA)(CB) 
UUU
恒成立问题: 
 
ax 
2bxca在R上恒成立的条件a且△bxca在R上成立的条件为
2 
a且△
0(0)00;ax0(0)0 
指数函数: 
n 
专业资料整理 
 
0 
WOED格式 
当n;
为奇数时:aanaa 
a,0 
nnnn 
a, 
a0
a 
mn 
m 
   
a 
n 
a 
a
m 
1a0,m、nN,且1) 
( 
n 
a 
m
*m 
;当为偶数时: 
r,、;,、;,; 
 
a 
srsrsrsrrr
aa(a0rsQ)(a)a(a0rsQ)(ab)ab(a0b0rQ) 
p 
对勾函数单调区间公式:对勾函数基本形式: 
yx,在(,0)(0,)上 
x
单调递增:( 
 
, 
 
p) 
 
( 
单调递减: 
( 
) 
  
p, 
p0 ) 
,)
(, 
专业资料整理 
0 
p
1
WOED格式 
人教版高中数学必修一至必修四公式(必会)
对数函数: 
logNNNaa 
log
a
a,log
a<
br>blog
b
a1,log
a
10,(01) 
1
aa、且, 
1 
 
log
a
b(a、b0且a、b1),
loga 
b 
  
ddc 
log
blogloglog 
ab 
ccd 
aba 
c 
a 
d 
b 
log(MN)logMlogN 
aaa 
M 
log log M 
a a 
N 
n 
logmnlog 
aa 
n 
logmblog 
a 
n
 
m 
 
   
log N 
a
(a、M、N>0,且a≠1)lnxlogx(x0),lneloge1 
 
ee
logb 
c 
b 
(a、b、m0,nR,且a1),log
a<
br>b(a、b、c0,且a、c1)(换底公式) 
a 
loga 
c
m 
函数图像(必须熟) 
x
表1
指数函数
yaa0,a1对数数函数log0,1 
yxaa
a 
定义域xRx0, 
值域y0,yR 
图象
过定点(0,1)过定点(1,0) 
减函数增函数减函数增函数 
x(,0)时,y(1,) 
x(0,)时,y(0,1) 
性质
x(,0)时,y(0,1) 
 
x(0,)时,y(1,) 
x(0,1)时,y(0,) 
x(1,)时,y(,0) 
x(0,1)时,y(,0) 
xy 
(1,)时,(0,) 
专业资料整理
WOED格式 
ab 
ababab 
表2幂函数yx(R)
2
专业资料整理 
WOED格式
人教版高中数学必修一至必修四公式(必会) 
 
p 
q 
00111 
p为奇数 
奇函数 
q为奇数 
p 
为奇数
q为偶数 
p为偶数 
偶函数 
q为奇数 
第一象限性 
质
 
减函数增函数过定点(0,1)
判断奇偶函数:若f(x)f(x)则为偶函数,若f(x)f(x)则为奇函数(奇函数f(0)0)
判断单调函数:○1在定义域内设 
x
1
x,化简f(x
1
)f(x
2
),若f(x
1
)f(x
2
)0即f(x
1
)f(x
2
)则认为该函数在其 
2
f即则认为该函数在其定义域内单调递增。○2若在定义域内设 
x
定义域内单调递减,若(
1
)f(x)0f(x)f(x) 
212 
x
1
x,化简f(x
1
)f(x
2
),若f(x
1
)f(x
2
)0即f(x
1
)f(x
2
)则认为
该函数在其定义域内单调递增,若 
2 
f(x
1
)f(x
2
)0即f(x
1
)f(x
2
)则认为该函数在其定义域内单调递减。(具体
情况具体定) 
函数的周期:若f(xT)f(x),则T为函数周期。 
必修二:
一、直线与方程 
(1)直线的倾斜角 
定义:x轴正向与直线向上方向之间所成的角
叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾
斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 
(2)直线的斜率 
①
定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即ktan。
斜 
率反映直线与轴的倾斜程度。
当0,90时,k0;当90,180时,k0;当90时,k不存在。 
yy
2xx 
1 
专业资料整理 
WOED格式
②过两点的直线的斜率公式:k(
12
) 
xx 
21 
注
意下面四点:(1)当x
1
x
2
时,公式右边无意义,直线的斜率不存在,倾
斜角为90°; 
(2)k与P
1
、P
2
的顺序无关;(3)以后求
斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)
求直线的倾斜角可由直线上两点的坐标先求
斜率得。到 
3
专业资料整理 
WOED格式
人教版高中数学必修一至必修四公式(必会) 
(3)直线方程 
①点斜式:yy1
k(xx
1
)直线斜率k,且过点x
1
,y
1
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。 
当直线的斜率为90°时,
直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x
1
,
所以它的方程是x=x
1
。
②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b 
yyxx 
③两点式: 
11 
(x
1
x
2
,y
1<
br>y
2
)直线两点x
1
,y
1
,x
2
,y
2
 
yyxx 
2121 
xy 
④截矩式:1
ab 
其中直线
l
与
x轴交于点(a,0),与y轴交于点(0,b
),
即
l
与
x轴、y轴的截距分别为a,b。
AxByC0
(
A,B不全为0)
注意:○1各式的适用范围○2特殊的方程如: 
⑤一般式:
平行于x
轴的直
线:
yb
(
b为常数);平行于y轴的直线:xa(a为常数);
(5)直线系方程:即具有某一共同性质的直线 
(一)平行直线系
平行于已知直线0 
A
0
xByC( 
00
(二)过定点的直线系 
 
(ⅰ)斜率为k
的直线系:
yy
0
kxx
0
,直线过定点 
(ⅱ)过两条直线l
1
:AxB
yC0
,
l
2
:A
2
xB
2
yC
2
0
的交点的直线系方程为
 
111 
xByCAxByC0
11222 
(6)两直线平行与垂直 
1
当
A
0
,B是不全为0的常数)的直线系:A
0
xB
0
yC0(C为常数)
 
0 
x
0
,y; 
 
0 
l
1
:yk
1
xb
1,
l
2
:yk
2
xb
2
时, 
l
1
lkk,bb;l
1
l
2
k
1
k
2
1 
21212
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 
(7)两条直线的交点 
l
1
:A
1
xB
1
yC
1
0l<
br>2
:A
2
xB
2
yC
2
0相交
Ax 
 
B 
 
y 
 
C 
 
0
  
交点坐标即方程组 
 
的一组
1 1 1 
解。
A 
 
x 
 
ByC 0 
2 
   
2
2 
方程组无解l
1
l
2
;方程组有无数解l
1与
l
2
重合 
(8)两点间距离公式:设 
A(x,y),(Bx,y)是平面直角坐标系中的两个点, 
1122 
22
  
则 
|AB|(xx)(yy) 
2121 
Ax 
By 
 
C 
  
(9)点到直线距离公式:一点Px
0<
br>,y
0到直线
l
1
:AxByC0
的距离
0 0 
d 
2 2 
A 
 
B
(10)两平行直线距离公式 
○在任一直线上任取一点,再转化为点到直线的距离进行求解。
CC 
12 
○设直线l
1
AxByC
1
0,l<
br>2
AxByC
2
;则两点间的距离为d(A、B都相等)
2
1
22 
AB 
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程 
专业资料整理 
WOED格式 
2ybr
(1)标准方程 
 
x
,圆心
a,b
,半径为
r;
a 
2yDxEyF 
(2)一般方程x0
2
22
4
专业资料整理 
WOED格式
人教版高中数学必修一至必修四公式(必会) 
2
当
D40时,方程表示圆,此时圆心为 
2EF 
22EF
当
D40时,表示一个点;当D40时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断: 
222
 
(1)设直线l:AxByC0,圆 
C,圆心Ca,b到l的距离为
:xaybr 
2
2EF 
D,半径为
r
1DE4F
 
, 
2 
22 
E22
 
AaBbC
d,则有 
2B 
A 
2
drl与C;drl与C相切;drl与C相交 
相离 
222 
(2)设直线l:AxByC0,圆
C:xaybr,先将方程联立消元,得到一个一元二次方程之后,令
其中的判别式为,则有0l与C相离;0l与C相切;0l与C相交 
2 
xx
0
yyr
去解直线与圆相切的问题,其中
x
0
,y
0表示切点坐标,r注:如果圆心的位置在原点,可使用公式 
0 
表示半径。
(3)过圆上一点的切线方程: 
2 
22
2yr①圆 
xx
0
yyr(课本命题).x,圆上一点为(x
0
,y
0
),则过此
点的切线方程为 
0 
2
+(y-b)=r,圆上一点为(x
0
,y
0
),则过此点的切线方程为(x
0
-a)(x-a)+(y
0-b)(y-b)=r(课本命题的推广). 
222
②圆(x-a)
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
222 22 2 
    
设圆 
C 
2
:xaybR
C
1
:xaybr, 
11 
22
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
dRr
时两圆外离,此时有公切线四条;
当dRr时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 
当
当Rrd
Rr时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当
dRr
时,两圆
内切,连心线经过切点,只有一条公切线;
时,为同心圆。
当dRr时,两圆内含;
当
d0
表面积与体积
5、柱体、锥体、台体的
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高,
正棱锥侧面积SrlS
直棱柱侧面积
chS2rh 
圆柱侧Sch'
2 
1 
S
正棱台侧面积
S(rR)l
(c
1
c)h' 
圆台侧面积2 
2 
S2rrl 
圆柱表Srrl 
 
' 
h为斜高,l为母线)
1 
圆锥侧面积 
 
S
圆台表
r 
2rlRlR
 
2
专业资料整理 
WOED格式 
圆锥表
(3)柱体、锥体、台体的体积公式 
VSh 
 
2 
 
1
柱 
VShrh 
1 
圆柱 
2
V
锥
ShVrh 
33 
圆锥 
111 
''22
''V
圆台
SSSShrrRRh 
V
台
(SSSS)h
()()3 
33 
4 
2
(4)球体的表面积和体积公式:V
球
=R;S
球面
= 
3
4R 
3(5)关于平面的公理: 
公理1:如果一条直线的两点在一个平面内,那么
这条直线是所有的点都在这个平面内。
公理2:经过不在同一条直线上的三点,有且只有一个平面。 <
br>公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
公理3的
作用: 
①它是判定两个平面相交的方法。 
专业资料整理 
5
 
WOED格式 
人教版高中数学必修一至必修四公式(必会)
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
公理4:平行于同一条直线的两条直线互相平行 
(6)空间直线与直线之间的位置关系
①异面直线定义:不同在任何一个平面内的两条直线 
②异面直线性质:既不平行,又不相交。
③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 
④异
面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和
b’所成 
的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90
°],若两条异面直线所成 
的角是直角,我们就说这两条异面直线互相垂直。
说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理
(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。
②求异面直线所成角步骤: 
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移
到某个特殊的位置,顶点选在特殊的位置上。
证明作出的角即为所求角C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)平面与平面平行的判定及其性质 
两个平面平行的判定定理
○1如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
○2如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行), 
○3垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
○1如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
○2如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
(9)垂直关系的判定和性质定理 
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
(10)空间两点距离坐标公式:2 
22
d(x
2
x)(yy)(zz)
12121
 
必修三: 
nn1 
秦九韶算法:11221 
a
xa
1
x...aaxaxax...xaxannnnn 
回归直线方程:
必修四: 
正角:按逆时针方向旋转形成的角
1、任意角负角:按顺时针方向旋转形成的角 
零角:不作任何旋转形成的角
2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.
专业资料整理 
B、 
WOED格式
6
专业资料整理 
WOED格式
人教版高中数学必修一至必修四公式(必会) 
第一象限角的集合为k360k36090,k
第二象限角的集合为k36090k360180,k
第三象限角的集合为k360180k360270,k
第四象限角的集合为k360270k360360,k
终边在x轴上的角的集合为k180,k
y
轴上的角的集合为
k18090,k
终边在
终边在坐标轴上的角的集合为k90,k
3、与角终边相同的角的集合为k360,k 
1122
4、关于扇形的计算公式:lRRSRRRl 
2π2; 
π 
2222
ππ 
l——弧长α——圆心角(弧度制R——扇形半径S——面积 
180 
yxy 
 
sin;cos;tan(x 
rrx
象限一二三四α0ππππ2π3π5ππ 
2 
3ππ6432346 
2
 
sinα 
++--sin 
 
α 
+--+cos
 
α 
+-+-tan 
 
α 
sinsin 
0
 
1 
 
 
0 
 
1 
2 
3 
2 
 
tanα 
 
3 
3 
2222
sincos1;sincostan;tan;cos1sin;sin1cos;cos;1
costan 
 
2 
2 
 
2 
2 
1-1 
3 
3- 
 
3 
2 
 
10
2 
 
1 
 
3 
2 
  
1
- 
2 
 
2 
2 
  
2 
-
2 
 
10-10 
2 
  
3 
- 
2
  
3 
- 
3 
-101 
 
180 
, 
157.3 
弧度制与角度制的换算公式:2360,1 
2
2y 
(x为该点到y轴的距离,y为该点到x轴的距离 
0)
rx) 
 
cosα 
 
00 
 
2
tan 
 
1 
2 
cos 
诱导公式:(kZ) 
sin(k2)sin;sin()sin;sin()sin;sin()cos;sin()cos;si
n() 
 
22 
专业资料整理 
sin 
WOED格式 
cos(k2)cos;cos()cos;cos()cos
;cos()sin;cos()sin;cos( 
 
22 
)cos 
7
专业资料整理 
WOED格式
人教版高中数学必修一至必修四公式(必会)
tan(k2)tan;tan()tan;tan()tan;tan()tan
函数形式周期对称中心对称轴方程函数形式周期对称中心对称轴方程 
y2(k,0)使 
Asin(x) 
(x)k 
求出的x即
为对称中心(x)= 
轴的横坐标 
 
的横坐标 
 
k求
2 
出的x即为 
对称轴的横的横坐标 
坐标
函数形式单调递增区间单调递减区间奇偶性 
2k,2k(kZ)2k,2k(kZ) 
2222 
ycosx 
偶
2k,2k(kZ)2k,2k2(kZ) 
ytanx 
无单调递减区间奇
 
k, 
2 
k(kZ) 
 
2 
奇 
 
2 
求出的x即 
为对称中心 
 
xk 
y2,0) 
Acos(x)(k 
使 
使 
(x)k 
xk使 
(x)= 
2 
k求出的 
x即为对称 
2
ysinx 3 
(注:以上两个表格中的k皆属于Z) 
和差公式: 
cos()coscossinsin;sin()sincoscossin;tan() 
tan 
1tan 
ab 
tan 
 
tan 
1
 
tan 
 
1 tan 
 
tan() 
4
 
22 
asinbcosab(sincos)(辅助角公式) 
2222
abab 
万能公式:(不考,也不常用,作为了解) 
 
2tan1
2 
; 
cos 
 
2 
  
tan 
2
; 
tan 
  
2 
 
tan 
  
2
; 
sinbcos 
a 
专业资料整理 
   
2 2
a 
b 
WOED格式 
sinsin() 
2
   
1 
tan 
2 
半角倍角公式: 
2 
1 
tan 
 
2 
2tan 
2 
1 
tan 
2 
22
倍角:sin22sincostan2cos2cossin(cossin)(cossin)
;2; 
1tan 
8
专业资料整理 
WOED格式
人教版高中数学必修一至必修四公式(必会)
2112sin1sin2sincos2sincos(sincos) 
22
cos22cos; 
 
1cos22 
 
2 
cos 
; 
1cos22 
  
2 
 
sin
; 
sin 
 
2 
2 
 
cos 
1
    
2 
sin 2 
; 
2 
cos 
1
 
cos 
 
1 cos 
1 
 
cos
 
sin 
2 
 
1 
 
cos2 
2 
; 
2 
sin 
sin 
  
1 cos
 
y 
 
P 
 
sin 
1 
sin( 
2 
  
) sin( 
 
) 
) 
 
OMA 
 
T 
1 
 
cos
 
2 
 
2 
22
1cos1cos 
半角: 
sin;cos;tan 
2222 
2)
1cos2cos;1cos2sin;1sin(sincos 
2222
积化和差公式:(高一不要求掌握) 
1 
sincossin()sin();cos 
2 
11 
coscoscos()cos();sinsincos()coa( 
22
和差化积公式:(高一不要求掌握)
sinsin2sincos;sinsin2cossin(三角函数线配图) 
2222
coscos2cossin;cos 
 
22
三角函数线:sin,cos,tan 
三角函数图像(需记牢) 
  
函
 
数 
性质 
 
yxycosxytanx 
sin
 
x 
cos2sinsin 
 
22 
图象
定义域RRxxk,k 
2 
值域1,11,1R 
 
当2
xkk时, 
2 
 
最值既无最大值也无最小值 
y1x2k
;当
max 
 
 
y
max
1;当x2k
 当x2kk时, 
2
k时,y
min
1.k时,y
min
1. 
周期性22
奇偶性奇函数偶函数奇函数
单调性在2k,2k
在
2k,2kk上是在k,k 
专业资料整理
WOED格式 
2222 
9
专业资料整理
WOED格式 
人教版高中数学必修一至必修四公式(必会) 
k上是增函数;在增函数;在2k,2kk上是增函数. 
 
3 
 k上是减函数.
2k,2k 
22 
k上是减函数. 
 对称中心k,0k
对称轴 
 xkk 
对称中心k,0k 
 
k 
2
2 对称中心,0 
2 
对称轴
xkk 
无对称轴 
k
对称性 
向量:
加法运算:ABBCAC(在三角形中可看懂;ABADAC(在平行四边形中可看懂)
三角形不等式:ababab.
①交换律:abba;②结合律:abcabc;③a00aa. 
坐标运算:设 
axy, 
 
bx
2
,y
2
,则abx
1
x
2
,y
1
y
2
1
,
1
 
向量减法运算:ACABBC(在三角形中可看懂)
坐标运算:设 
 ax
1
,y
1
,  bx
2,y
2,则
abx
1
x
2
,y
1
y<
br>2
. 
设、两点的坐标分别为x
1
,y
1,
x
2
,y
2
,则x
1
x
2
,y
1
y
2
 
向量数乘运算:①aa
;
 
②当0
时,a
的方向与
a
的方向相同;当
0
时,
a
的方向
与
a
的方向相反;当
0
时,
a0.
⑵运算律:①aa
;②
aaa
;③
abab.
⑶坐标运算:设
ax,y
,则
ax,yx,y
.
 
分点坐标公式:设点是线段1
2
上的一点,
1
、
2
的坐标分
别是x
1
,y
1
,x
2
,y
2
,当12
时,点的坐 
标是 
 
xxyy
1
2
,
1
2 
11
平面向量的数量积:⑴ababcosa0,b0,0180.零向量与任一向量的数量积为0. ⑵性质:设
a
和
b都是非零向量,则①abab0
.②当
a与
b同向时,abab
;当
a
与
b反向时,
专业资料整理 
WOED格式 
 
abab; 
2
 
2 
aaaa或aaa.③abab. 
10
专业资料整理
WOED格式 
人教版高中数学必修一至必修四公式(必会)
⑶运算律:①abba;②ababab;③abcacbc. 
⑷坐标运算:设两个非零向量
ax
1
,y
1
,bx
2
,y
2
,则abx
1
x
2
y
1
y
2
.
ax,y
222 22 
若,则
 
axy
,或
 
 
axy
.
 
设 
ax
1
,y
1
,bx
2
,y
2
,
则 
 
abxxyy. 
12120 
设ax
1
,y
1,
bx
2
,y
2,则
a∥bx
1
y
2
x
2
y
1
0 
设a、b都是非零向量, 
 
ax
1
,y
1
,bx
2
,y
2
,
是
ab的夹角,则 
 
ab 
 
与
cos
xxyy 
.
1212 
2222 
abxyxy
1122 
空间几何: 
6 
 
6 
 
2
正四面体对棱垂直,若设正四面体棱长为a,其外接球半径为a ,其内接球半径为a
,其棱切球半径为a 
4 12 4 
重心:各边中线的交点。垂心:各边垂线的交点
AD 
c 
l 
BC 
 
AC 
2BDABAD 
 
2 
 
22 
b 
a 
 
2bc 
22 
2( 
)l 
a
A 
 
c 
  
b 
111
SabsinCbcsinAacsin 
B 
BC 
222 
a
专业资料整理 
 。
 
 
WOED格式
11 
专业资料整理 
我心中的理想课堂高中数学-高中数学必修2同步导练
高中数学老师忘关投影仪-高中数学最重要的是
高中数学题海战术有用吗-高中数学课件范文
2017年下教资高中数学-高中数学第二章基本初等函数
高中数学简称高数-高中数学必修一集合的知识点总结
高职数学教师和高中数学老师-高中数学集合维恩图
高中数学必修5课时作业-高中数学必修5一线精练答案
2020闵行区高中数学二模答案-福建省高中数学竞赛2019
- 
                       上一篇:高中数学必修1 指数与指数函数 
                       
 
下一篇:高中数学学习思路(必修1)