-
同济大学桥梁工程复习提纲
第一篇总论(
15%
左右)
1
、
桥梁的基本组成及其各部分的作用
桥跨结构
:是在线路中断时跨越障碍的主要承重结构。
桥墩和桥台
:时支承桥跨结构并将恒载和车辆等活载传至地基的建筑物。
基础
:桥墩和桥台中使全部荷载传至地基的底部奠基部 分。
2
、
常用术语: 计算跨径、标准跨径、净跨径、总跨径、桥梁全长、桥梁高度、建筑高度、
容许建筑高度
、桥下净空、净矢高、计算矢高、矢跨比(重点)
计算跨径
示;对
于拱式桥,是两相邻拱脚截面形心点之间的水平距离。
标准跨径
:对于梁桥,是指两相邻桥墩中线之间的距离,或墩中线至桥台台背前缘之间
的
距离;对于拱桥,一般是指净跨径。
净跨径
:对于梁式 桥是设计洪水位上相邻两个桥墩(或桥台)之间的净距,用表示,对
于拱式桥是每孔拱跨
两个拱脚截面最低点之间的水平距离。
总跨径
:是多孔 桥梁中各孔净跨径的总和,也称桥梁孔径,它反映了桥下宣泄洪水的能
力。
桥梁全长
:简称桥长,使桥梁两端两个桥台的侧墙或八字墙后端点 之间的距离。
桥梁高度
:桥面与低水位之间的高差,或 位桥面与桥下线路路面之间的距离。
建筑高度
:桥上行 车路面高程至桥跨结构最下元之间的距离。
净矢高
:是 从拱顶截面下缘至相邻两拱脚截面下缘最低点之连线的垂直距离,以表示。
计算矢高
:是从拱顶截面形心至相邻两拱脚截面形心之连线的垂直距离,以表示。
< p>
矢跨比
:是拱桥中拱圈(或拱肋)的计算矢高与计算跨径之比,也 称矢拱度。
3
、
桥梁分类方式及各类桥梁的名称(重点)
按受力特点分
,有梁式桥、拱式桥、悬索桥、斜拉桥、刚构桥和组合体系桥。
按用途分
:有铁路桥、公路桥、公铁两用桥、人行桥、运水桥(渡槽)及其他专用桥梁< /p>
(如通过管道、电缆等)
。
按跨
越障碍分
,有跨河桥、跨谷桥、跨线桥(又称立交桥)
、高架桥、栈桥等。
按采用材料分
,有木桥、钢桥、钢筋混凝土桥、预应力混凝土 桥、圬土桥(包括砖桥、
石桥、混凝土桥)等。
按桥面在桥跨结构的不同位置分
,有上承式桥、下承式桥和中承式桥。
按桥长分,
桥长
20 m
及以下为小桥,
20 ~ 100 m
为中桥,
100
~
500 m
为大桥,
500 m
以上为特大桥。
4
、阐释梁桥、拱桥、刚架桥、缆索承重桥梁的主要受力特点及其适用条 件(重点)
梁桥
:在竖向荷载作用下无水平反力的结构 ,产生弯矩最大。钢混简支梁桥在公路上应
用最广,
结构简单,
施工方便,
对地基承载能力要求不高,
25m
以下。
预应力钢混简支,
50m
。
悬臂式或连续式,经
济省料。钢桥,跨径很大,承受很大荷载。
拱式桥
:在 竖向荷载下桥墩受水平推力,此推力同时抵消荷载所引起拱圈内的弯矩,因
此比梁桥弯矩
和变形小。承重结构以受压为主。刚拱桥,跨径很大。系杆拱,地基不适于修
建具有强大
推力的拱桥。
钢架桥
:在竖向荷载作用下,梁部主要受 弯,柱脚处也有水平反力。跨中建筑高度可较
小,当路线立交或跨越通航江河时采用,降
低路线高程改善纵坡减少路堤土方量。预应力
T
型和连续、
悬臂安装,
加速大跨度施工进度,
克服在江河或深谷中搭设支架难度。
多跨连续,
超静定,附加内力较大,设计时减少墩柱抗弯刚度,或两侧设置活动铰
支座。斜腿式,跨越
陡峭河岸和深邃峡谷。悬臂、连续、斜腿用箱式横截面。
悬索桥
:竖向荷载作用下,通过吊杆使缆索承受很大拉力,需要巨 大锚碇,也具有水平
拉力。自重轻,跨越特大跨度,在西南山岭地区和在遭受山洪泥石流
冲击等威胁的山区河流
上,以及大跨径。斜拉桥:与悬索相比结构刚度大,即变形小,抗
风震能力好。
5
、桥梁设计基本要求和程序(重点)
要求
:使用上的要求,经济上的要求,结构尺寸和构造上的要求,施工上的要求,美观< /p>
上的要求,
6
、对于跨河桥梁,如何确定桥梁总跨径与分孔
总跨径
:可参照水文计算确定。必须保证桥下有足够的排洪面积,使河床不致遭 受过大
冲刷,还要根据河床土壤的性质和基础埋深。
< br>分孔
:使上下部结构总造价趋于最低。同时考虑通航要求。
7
、桥梁各种标高的确定应考虑哪些因素
设计洪水位,桥下通航或通车净空的需要,桥型,跨径等。
8
、确定桥面总宽时应考虑哪些因素
行车和行人的交通需要
9
、为 什么要尽可能避免桥梁与河流或桥下路线斜交,斜交桥修建的必要性。
以避免增加桥梁长度而提高造价,施工方便
必
要性:对于一般小桥,为了改善路线线形,或城市桥梁受原有街道的制约是,业允许
修建
斜交桥,斜度通常不宜大于
45
°。
1
0
、永久作用、可变作用与偶然作用的主要内容(重点)
:哪些荷载
永久作用(恒载)
:包括结构物自重、桥面铺装及附属设施的重量、 作用于结构上的土重
及土侧压力、基础变位作用、水浮力、长期作用于结构上的人工预施
力以及混凝土收缩和徐
变作用。
可变作用
p>
:汽车荷载及其冲击力、制动力和离心力、人群荷载、车辆荷载引起的土侧压
力、支座摩阻力、温度(均匀、梯度)作用、风荷载、流水压力、冰压力。
偶然作用
:地震力作用、船舶或漂流物的撞击作用。
< /p>
11
、术语:永久作用、可变作用、作用代表值、标准值、频遇值、准永久 值、极限状态、作
用效应、作用效应设计值、分项系数、作用组合效应、作用组合效应系
数、作用效应基本组
合、作用效应偶然组合、作用短期效应组合、作用长期效应组合
p>
永久作用
:在设计使用期内,其作用位置的大小、方向不随 时间变化,或其变化与平均
值相比可忽略不计的作用。
可变作用
:在设计使用期内,其作用位置和大小、方向随时间变化,且其变化与平均值< /p>
相比不可忽略的作用。
偶然作用
:这种荷载在设计使用期内不一定出现,但一旦出现,其持续时间较短而数值
很大。
p>
作用代表值
:针对不同设计目的所采用的各种作用规定值, 它包括作用标准值、准永久
值和频遇值等。
标
准值
:荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值、
众值、中值、或某个分位值)
。
频遇值
p>
:对可变荷载,在设计基准期内,其超越的总时间为规定的较小比率或超越频率
为规定频率的荷载值。
“频繁出现”
95%
概率分位。
准永久值
:对可变荷 载,在设计基准期内,其超越的总时间约为设计基准期一半的荷载
值,
“ 经常出现”
50%
概率分位。
极限状
态
:整个结构或结构的一部分构件超过某一特定状态就不能满足设计规定的某一
< br>功能要求,此特定状态称为该功能的极限状态。
作用效应
:
作用效应是指结构对所受作用的反应,
如由作用产生的结构或构件的轴 向力、
弯矩、剪力、应力、裂缝、变形和位移等。
作用效应设计值
:作用的设计值为作用标准值乘以相应的分项系数。
分项系数
:为保证所设计的结构具有规定的可靠度而在设计表达式中采用的系数 ,分作
用分项系数和抗力分项系数两类。
作用
组合效应
:结构上几种作用分别产生的效应的随机叠加称作用效应组合。
作用组合效应系数
:在作用效应组合中,由于几个独立可变作用效应最不利值同 时出现
的概率较小而对作用采用的折减系数。
作用效应基本组合
:承载能力极限状态设计时,永久作用设计值效应与可变作用设计值
< p>效应的组合。
作用效应偶然组合
:承载能 力极限状态设计时,永久作用标准值效应与可变作用某种代
表值效应、一种偶然作用标准
值效应的组合。
作用短期效应组合
:正常使用极限状态 设计时,永久作用标准值效应与可变作用频遇值
效应相组合。
作用长期效应组合
:正常使用极限状态设计时,永久作用标准值效应与可变作用准 永久
值效应相组合
12
、作用组合的基本原则
应
只涉及结构上可能同时出现的作用效应,并以桥梁在施工或运营时可能处于的最不利
受力
状态位原则
13
、汽车荷载等级,车道荷载与车辆荷载 特点与适用条件(重点)
汽车荷载分为公路—Ⅰ级
(高 速公路、
一级公路)
和公路—Ⅱ级
(二级公路、
三 级公路、
四级公路)
两个等级,
二级公路为干线公路且重 型车辆多是,
涵洞设计采用公路—Ⅰ级荷载,
四级公路上车道荷载乘
p>
0.8
折减,车辆乘
0.7
。
汽车荷载有车道荷载和车辆荷载组成。车道荷载由均布荷载和集中荷载组成。桥梁结构
的整体计算采用车道荷载;桥梁结构的局部加载、涵洞、桥台和挡土墙压力等的计算采用车
辆荷载。车辆荷载与车道荷载的作用不得叠加。
14
、为什么车道很多或者桥梁很长时,汽车荷载效应可以折减
当车道道或桥梁很长的时候,相应的加载在桥梁上的车辆或者均布荷载就比较多。而按
照正常的情况来看,许多车
(
均布荷载也看成车的话
)
同时出现在桥梁上,且同时位于最不利
位置的几率很小,这意味着如果不折减,计
算得到的车辆荷载效应会比实际偏大。
15
、汽车荷载冲击力的适用条件与计算方法
适用条件
:
1
、钢桥,钢筋混凝土桥及预应力混凝 土桥,圬工拱桥等上部结构和钢支座、
板式橡胶支座、盆式橡胶支座及钢筋混凝土柱式墩
台。
2
、填料厚度(包括路面厚度)大于等
于
的拱桥、涵洞以及重力式墩台不计冲击力。
计算方法:
汽车荷载标准值×冲击系数
μ
16
p>
、公路桥涵设计体系规定了桥涵结构的两种极限状态(重点)
规定了按承载能力极限状态(基本组合、偶然组合)和正常使用极限状态(作用短期效
应组合、作用长期效应组合)进行作用效应的组合,并取其最不利效应的组合进行设计。
17
、汽车制动力的计算原则(重点)
:双向如何计算
汽车荷载制动力按同向行驶的汽车荷载(不计冲击力)计算,并按以使桥梁墩台
产生最
不利纵向力的加载长度进行纵向折减。一个设计车道上由汽车荷载产生的制动力标
准值按车
道荷载标准值在加载长度上计算的总重力的
10%
计算。同向行驶双车道的汽车荷载制动力标
准值为~个设计车道制动力标准值的两倍;
同向行驶三车道为一个设计车道的
2.34
倍;
同 向
行驶四车道为一个设计车道的
2.68
倍。制动力的着 力点在桥面以上
1.2
m
处,计算墩台时, p>
可移至支座铰中心或支座底座面上。
第二篇钢筋混
凝土和预应力混凝土简支梁(
40%
左右)
1.
简支梁的主要类型及其适用情况(重点)
板桥
(矩形截面、施工方便、自重大、挖空、适合中小跨径桥梁、异形桥、双向受 力)
肋板式梁桥
(横截面内肋形结构(主要
T
< p>梁)π
型、
I
型、
T
型、多用于纵向分缝装配式
桥梁、适合中等跨径简支梁)
箱形梁桥
(横截面呈一个或几个封闭箱形、
单箱单室、
单箱多室、
分离多箱、
整体性好、
抗扭刚度大、上
下缘均可受压、适合大跨径悬臂和连续梁、亦适于中大跨径预应力简支
梁、施工模板复杂
)
2
、桥面构造包括哪些部分
桥面铺装、防水和排水设备、伸缩缝、人行道或安全带、缘石、栏杆和灯柱等构造。
3
、桥面铺装的形式与特点,
混凝土桥面配筋的作 用,
混凝土铺装强度等级要求,
桥面横坡的
设置方式(重
点)
桥面铺装的形式与特点
:
1. p>
普通水泥混凝土或沥青混凝土(非严寒区不做防水层水泥混
凝土:造价低,耐
磨性能好,适合重载交通,但养生期长,日后修补较麻烦。沥青混凝土:
铺装重量较轻,
维修养护方便,
通车速度快,
但易老化和变形)
( 钢纤维混凝土:
弯拉强度高,
抗裂,抗疲劳,耐磨,减薄道面厚度,提高
工程质量,降低工程维修费用,延长工程使用寿
命)
2.
防水混凝土(非冰冻区需防水,强度等级不低于桥面板混凝土,上不设面层,加
2cm
< p>沥青表面处置为磨耗层)
3.
具有贴式或涂料防水层的水泥混凝土或 沥青混凝土(三油二毡)
混凝土桥面配筋的作用
: p>
加强铺装层强度一面混凝土开裂,有的在接缝处参与开裂。
混凝土铺装强度等级要求
:
不低于桥面板混凝土的强度等级,不低于
C40
桥面横坡的设置方式
:
1.
对 板桥或就地浇筑的肋梁桥,设在墩台顶部做成倾斜的桥面板
2.
装配式肋 梁桥采用不等厚的铺装层(混凝土三角垫层或等厚的路面铺装层)以构成桥面横
坡
3.
在较宽的桥梁中直接将行车道板做成双向倾斜的横坡
4
、为什么要设置桥面伸缩装置,伸缩装置选用的依据是什么(重点)伸缩量的大小包 括:
为保证桥跨结构在气温变化、
活载作用、
混凝土收缩与徐变影响下按静力图式自由变形。
依据
:
< p>视桥梁变形量的大小和车辆活载大小而异,要保证自由变形,
而且要使车辆平 顺通过和
防止雨水垃圾泥土等深入阻塞。
伸缩量的大小包括
:以安装伸缩缝结构时为基准的温度伸长
量和伸缩量,收缩量和徐变量及计入梁的制造
与安装误差的富余量(按计算变形量的
30%
估
算)
p>
,对大跨度应计入因荷载作用和梁体上下部温差所引起的梁端转角产生的伸缩缝变形量
4
、
桥面连续的概念,与先简支后连续有何异同(重点)
桥
面连续
是指上部构造利用钢筋混凝土结合在一起,变成一个整体结构。
简支后结构连续使用阶段结构形式就是连续梁,简支桥面连续只是桥面铺装层,结构形
式还是简支梁
6
、整体式板桥的受力特点与配筋特点
整体式简支板桥一般使用跨径在
8m
以下,其桥面宽度往往大于跨径,在 荷载作用下,桥
面板实际上处于双向受力状态,即除板的纵向中部产生正弯矩外,横向也
产生较大的弯矩。
因此,当桥面板宽较大时,除要配置纵向的受力钢筋外,尚应计算配置
板的横向受力钢筋。
整体式板桥行车道的主钢筋直径 不得小于
12mm
,间距不大于
20cm
,也不宜 小于
7cm
;两
侧边缘板带的主钢筋数量与中间板带相比
宜增加
15%
;
分布钢筋直径不得小于
6mm p>
,
间距不大
于
25cm
,并且 在单位板长的截面面积一般不应少于主钢筋面积的
15%
。
7
、装配式板桥横向连接
1.
企口式混凝土铰连接(圆形、菱形、漏斗形)
2.
钢板连接
8
、什么叫斜交桥,斜板桥的受力与配筋特点(重点)
由于桥位处的地形限制,或者由于高等级公路对线形的要求而将桥梁做成斜交。斜交板<
/p>
桥的桥轴线与支承线的垂线呈某一角度,习惯上称为斜交角。
< p>
1.
荷载有向两支承边之间最短距离方向传递的趋势
2.
< p>各脚点受力情况可比你连续梁工作
来描述
3.
在均布 荷载下,当桥轴线方向的跨长相同时,斜板桥的最大跨内弯矩比正桥要小,
跨内纵向最大
弯矩或最大应力的位置,随着斜交角的变大而自中央想钝角方向移动
4.
在上述< /p>
情况下,
斜板桥的跨中横向弯矩比正桥要大,
可认为横向增 大量相当于跨径方向减小量
与正
交桥梁相比弯矩大小(
最大跨内弯矩小,跨中横向弯矩大)
9
、装配式简支梁 横隔板(梁)的设置特点、原因,与连续梁和拱桥横隔板比较有何异同
钢筋混凝土和预应力混凝土桥梁的横隔板的主要作用是保证两片主梁的共同作用,有利
于
承受横向水平力及偏载等作用。
对于
T
形等开口截面梁,
借助横隔板可提高梁的抗扭刚度;
而对于箱形梁可有效地降低横隔板处及其梁体内
的扭曲应力。
10
、截面效率指标、束界图、减余剪力 图与预应力筋布置(重点)索界原则
截面效率指标
:< /p>
(
为核心距,为截面高度
)
越大的截面较为经济所 得的曲线为索界上限,
只要所布置预应力筋重心位于此界限内
束界图
:从下限心点向下量取就能保证梁任何截面在各个受力阶段上下缘应力都不 超过
规定值。同理也可绘出两个受力阶段受压区不超过容许值的相应索界线。由于简支梁
弯矩想
着梁端逐渐减小,故索界上下限也逐渐上移,这就是必须将大部分预应力筋向梁端
逐渐弯起
的原因之一。
减余剪力图与预应力筋
布置
:弯起的预应力筋显著抵消了梁内的荷载剪力,这样就大大
减小了预
应力混凝土的剪力,并进一步降低了腹板所承受的主拉应力。
索界原则
,后张预应力简支梁中预应力筋多在梁端附近弯起
11
、先张法和后张法预应力混凝土梁预应力筋的锚固特点与构造措施
先张法
:构件端截面加宽,锚固区内配置足够的包围纵向预应力筋的封闭式箍筋或螺旋
钢筋。
对直径大的钢丝,
可将钢丝端部轧成波浪形或用横 向钢筋锁住做成钢丝锚结。
后张法
:
锚具应力集中且有劈
裂力,配置足够钢筋加以保护。
“均匀、分散”原则,减小局部应力,有
足够净距方便施工。
12
、先张法和后张法的预应力损失类型(重点)
p>
先张法
:锚具变形和钢筋内缩引起的预应力损失;预应力钢筋和孔道壁摩擦引 起的;加
热养护时,因温差而产生的;
钢筋应力松弛;混凝土收缩徐变;
后张法
:管道摩阻损失;锚固损失;弹性压缩损失;钢筋应力松弛损失;混凝土收缩徐
变损失
。
13
、行车道板的形式与力学计算模式:单向板、双 向板、悬臂板、铰接板(重点)
单向板
:
边长比或长宽比等于和大于
2
的周边支承板看作由短跨承受荷载的单向受力板。
双向板:
长宽比小于
2
的板。
< p>悬臂板:沿短跨一端嵌固另一端为自由端。
铰接板:
一端嵌固
一端铰接
14
、术语:板的有 效分布宽度、荷载横向分布影响线、荷载横向分布系数(重点)
板的有
效分布宽度
:板在局部分布荷载作用下,不仅直接作用部分承担荷载,相邻部分
< br>也会承担一部分。
荷载横向分布影响线
:单位荷 载沿横向作用在不同位置时对某梁所分配的荷载比值变化
曲线。
荷载横向分布系数
:当把单位荷载按横向最不利位置布置在荷载横向影响线上, 求得各
片主梁分配到的横向荷载的最大值为
m
,此
m
表示主梁在横向分配到的最大荷载比例,即称
为荷载横向分布
系数。
15
、如何确定板的有效分布宽度,行车道板的 内力计算(重点)
单向板
:
a
?
M
,
a
为板的 有效宽度。
M
为车轮荷载产生的跨中总弯矩,
m
为 荷载中心处的
m
x
max
最大单宽弯矩值。
1
、单个车轮荷载在跨径中间
a
p>
?
a
1
?
l
/
3
?
a
2
?
2
H
?
l
/
3 (
?
2
/
3
l
)< /p>
;
2
、车轮
荷载在板的支承处
p>
a
'
?
a
1
?
t
?
a
2
?
2
H
?
t
;
3
、车轮荷载靠近板的支承处
a
x
?
a
'
?
2
< p>x
悬臂板:
a
?
2.15
l
0
,
a
?
a
1
?
b
'
内力计算:
当
t/h<1/4
时(即主梁抗扭能力较大时)
:跨中弯 矩
M
?
?
0.5
M
0
支点弯矩
M
p>
?
?
0.7
M
0
当
t/h>1/4
时(即主梁抗扭能力较小 时)
:跨中弯矩
M
?
?
0 .7
M
0
支点弯矩<
/p>
M
?
?
0.7
M
< p>0
16
、荷载横向分布系数的概 念,常用荷载横向分布系数计算方法的类型、基本假定与适用范
围(重点)
1.
杠杆原理法
(
1
)基本假定:忽略主梁之间横向结构的联系作用,即假设桥面板在主梁上断开,而当作 沿
横向支承在主梁上的简支梁或悬臂梁来考虑
(
2
)
适用场合:
①计算荷载位于靠近主梁支点② 近似用于横向联系很弱的无中间横隔梁的桥
梁③双主梁桥
2.
偏心受压法
(刚性横梁法)
(
1
)
基本假定:
①中间横隔梁 象一根刚度无穷大的刚性梁一样保持直线的形状②不考虑主梁
抗扭刚度
(
2
)适用场合:①具有可靠横向联接②桥梁较窄时 p>
(B/L<0.5)
③计算跨中横向分布系数
3.
铰接板法
(
1
)假定:①将多梁式桥简化为数根并列而相互横向铰接的狭长板(梁)②铰缝仅传递剪力 p>
③用半波正弦荷载作用在某一板上,计算各板(梁)间的力分配关系
-
-
-
-
-
-
-
-
-
上一篇:同济
下一篇:同济大学汽车学院复试要求